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Chapter 1

Introduction

Due to relatively consistent daily temperatures and sunlight exposure, seasons in

equatorial climates are often delineated by rainfall. Climatic seasons in East Africa,

for instance, are characterized by a bimodal rainfall pattern, in which the region expe-

riences the long rains from March to May (masika) and the short rains from October

to December (vuli), with alternating dry seasons in between1. With an economy

highly dependent on the agricultural sector, predictable rainy seasons are paramount

to food security, economic stability, and health outcomes in the region. The disagree-

ment between model predictions and observed trends in rainfall patterns is therefore

concerning; as climate models predict longer, wetter rainy seasons [43], reality has ex-

perienced historic droughts and unreliable rains [28]. Though this discrepancy–known

as the East African Climate Paradox–is of growing interest to climate scientists and

policymakers, the reasons for its existence are not yet well understood.

1.1 Rainfall Dependence in East Africa

We begin with the nontrivial problem of defining what constitutes East Africa. The

East African Community (EAC), an intergovernmental institution designed to uphold

the political and economic interests of member countries, o�cially consists of eight

countries, while the most expansive definition of East Africa consists of 18, defining

the region from the southern tip of Mozambique to the northern tip of Sudan [4].

Here we centralize our discussion on the areas most frequently cited as part of East

Africa: Tanzania, Kenya, Uganda, Burundi, and Rwanda, as well as the Greater

Horn of Africa, including Somalia, Ethiopia, South Sudan, Djibouti, and Eritrea.

1
We adopt here the widely used Swahili terminology, though these seasons are also referred to as

kiremt/belg (Amharic), gu/deyr (Somali), and ganna/bona (Oromo), with slightly di↵erent month

splits depending on the relevant subregion.
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As climate patterns have no interest in political borders, we only use a country-

based definition for convenience. As such, we also recognize portions of additional

countries that deserve the same categorization on the basis of climatic zones, including

eastern Democratic Republic of the Congo (DRC); northern Malawi, Mozambique,

and Zambia; and southern Sudan.

Figure 1.1: Boundaries of East Africa adopted from [8]

As cited by the EAC, over 80% of its nearly 300 million+ citizens are employed

in agrarian industries [1]. With such a high dependence on agriculture, there is an

accordingly high dependence on climate and weather patterns. By hindering agri-

cultural production, unreliable weather patterns can drastically alter downstream

economic, health, and development outcomes [8, 34, 38, 5, 6] in addition to the di-

rect negative impacts of extreme weather events. Most recently, historic droughts

have plagued the region, leading to food insecurity, malnutrition, disease, flooding,

population displacement, and conflict exacerbation among other harmful e↵ects. In

Somalia, arguably the hardest hit by recent droughts, over 250,000 people died in

the 2011 famine after three failed rainy seasons, with an additional drought in 2017

resulting in near-famine for 6.2 million [5, 6, 3]. Clearly, there is no dearth of exam-

ples indicating the importance of weather and climate patterns on human well-being,

particularly in East Africa.
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1.2 Why Climate Modeling?

We have thus far failed to concretely distinguish between climate and weather. Not-

ing that rainfall–the most frequent culprit of climate/weather-induced harm in East

Africa–is the product of the complex interplay between climate and weather, it is

important to map both to more precise definitions. In climatology, the distinguish-

ing factor is usually scale, both of time and space. Climate typically refers to larger

scale spatiotemporal patterns, whereas weather refers to the shorter, day-to-day con-

ditions of a particular area. A region’s climate essentially refers to the average of its

weather patterns, inextricably linking these notions together.2 Climate modeling is

thus an endeavor not only to better understand large-scale, dynamic physical systems,

but also to develop expectations for daily weather patterns. Accurately predicting

weather patterns in advance, particularly unfavorable weather patterns, enables early

intervention when mitigation strategies are necessary. Given the complex polycrises

facing regions such as East Africa, we thus turn to climate modeling as an imperative

to adequately respond to a changing climate.

1.3 Overview of Discussion

We first provide a technical background to climate modeling in Chapter 2, taking a

first-principles approach to understanding coupled models before exploring the mod-

ern landscape of CMIP models. Armed with these foundations, chapters 3 and 4

develop and critique our current understanding of the East African Climate Paradox,

both exploring and suggesting potential avenues for improvement. We conclude with

a brief acknowledgment of related research directions, re-emphasizing the significance

of this work in protecting human well-being.

2
Though the terms climatic weather and climate weather are occasionally used in the literature,

we do not use them here to avoid ambiguity.
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Chapter 2

Technical Background

For a full treatment of climate modeling, the reader is advised to consult [31, 17, 22],

which trace decades of progress and historical considerations in understanding modern

approaches. We focus here on the essential ingredients needed to analyze the East

African Climate Paradox.

2.1 Coupled Climate Models

The simplest climate model, deemed an Energy Balance Model (EBM), focuses on

“balancing the planetary radiation budget” [31], equalizing the radiative energy input

and output of the Earth. It has a surprisingly elegant form,

(1� ↵)
S

4
= �T

4
e (2.1)

where S is the solar constant, Te is the e↵ective temperature of the Earth, ↵ is an

albedo constant, and � is the Stefan-Boltzmann constant. Equation 2.1 provides a

course-grain overview of the Earth’s energy balance, and although useful in some con-

texts, fails to provide the resolution or specificity desired for many climate modeling

applications. When focusing on smaller spatiotemporal regions of interest or partic-

ular components of the Earth system, we require finer-grain details. We can achieve

this goal by conceptualizing the Earth as a collection of interrelated submodels; by

independently modeling both the physical systems that comprise the global climate

and the interactions between such systems, we can answer a wider array of questions

within climate modeling.

This “divide and conquer” mentality is the fundamental insight at the heart of

coupled models, most of which focus on the four major components of our climate
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system: the atmosphere, oceans, ice sheets, and land. The earliest coupled mod-

els, deemed general circulation models (GCMs)1, focused primarily on characterizing

the circulating fluid processes in the atmosphere and oceans. Modern coupled mod-

els are more complex, incorporating increasingly sophisticated representations of the

atmosphere, oceans, ice sheets, and land beyond just circulating fluids.

We now briefly introduce the core mathematics underpinning the major compo-

nents of modern coupled models.

Preliminary 1: Discretization

The equations we seek to solve in climate modeling generally do not have analytical

solutions; we therefore rely on spatiotemporal discretizations and numerical methods

to solve for variables of interest. Our choice of discretization scheme can vary greatly

depending on the desired resolution and application. In general, we divide the Earth

into a set of discrete chunks via a spatial grid and step forward/backward in time

by discrete time-steps. While the choice of time-step is usually a function of com-

putational capacity and target resolution, the choice of spatial grid is typically more

involved. Common spatial discretization schemes include Arakawa grids, linearized

latitude-longitude grids, cubed spherical units, icosahedral grids, and the yin-yang

grid.

Figure 2.1: Spatial grid schemes [26]. From L-R, we show lat-long, cubed sphere,
icosahedral, and yin-yang spatial discretization schemes.

Preliminary 2: Conservation Laws

Whether working with the atmosphere, oceans, land, or ice sheets, conservation laws

establish the basic tenants of physics from which we derive our models. We first posit

a general vectorized conservation equation for some arbitrary quantity �

1
Overtime, GCM gradually was interpreted as global coupled model as well, deviating slightly

from its original meaning. We simply use GCM as an acronym with no critical need to distinguish

between the two.
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@�

@t
= �r · (F+ �V) +H (2.2)

where F represents non-transport flux, �V represents transport flux, andH represents

a source/sink of substance �. Equation 2.2 describes an inertial frame in which � is

conserved within a volume V defined by surface S. In most three dimensional climate

models, V and S are defined by the choice of spatial grid, while � typically takes on

the meaning of mass, energy, or momentum.

Mass: When dealing with mass, � becomes density, typically denoted ⇢. We

recover a general conservation of mass equation by recognizing that mass can neither

be created nor destroyed (H = 0) and the only flux of interest is the transport flux

(F = 0).

@⇢

@t
= �r · ⇢V (2.3)

Energy: For conservation of energy, we typically focus on heat per unit volume.

� becomes ⇢cpT , where cp is specific heat and T is temperature. We have both

conductive and transport flux in this case, which requires the introduction of a new

variable, k, that corresponds to thermal conductivity. No longer assuming a zero-

valued H, as we allow for heat sinks/sources, we arrive at

@⇢cpT

@t
= �r · (�krT + ⇢cpTV) +H (2.4)

Momentum: Lastly, turning towards momentum (per unit volume), � becomes

⇢V. In terms of flux, we consider here advection and stress, the latter of which we

denote using �. External forces (e.g. gravity) can result in a nonzero H. For the case

in which we are only concerned with gravity, we achieve

@⇢V

@t
= �r · (�� + ⇢VV) + ⇢g (2.5)

In practice, many of the assumptions that allow for the above conservation laws are

broken by a number of factors, including but not limited to properties of compressible/non-

compressible fluids, phase changes, external forces, and grid cells at critical bound-

aries (e.g. a volume defined over the ocean-atmosphere boundary). As a result, the

generalized formulations simply serve as the backbone from which more specific gov-

erning equations can be derived, with the Navier-Stokes equations serving as a prime

example.
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Preliminary 3: Navier-Stokes Equations

Though a number of important relationships can be derived from conservation laws,

we would be remiss not to mention arguably the most important of those: the famous

Navier-Stokes equations, which arise from applying the conservation of momentum

to Newtonian fluids. In vectorized form, we write a concise formulation for an incom-

pressible fluid with constant viscosity as follows:

@~v

@t
+ (~v ·r)~v = �1

⇢
rp+ ⌫r2

~v + f (2.6)

Here we relate change in the fluid velocity vector (~v) to advection (~v · r), kine-

matic viscosity (⌫), pressure (p), and some collection of external forces f , usually

taken to be Coriolis forces and/or gravity. The Navier-Stokes equations are critical to

understanding the flow of viscous fluids2, making them essential to understanding at-

mospheric/oceanic circulatory processes, glacial flow, and the behavior of substances

that exhibit flow at relevant boundaries (e.g. land-atmosphere, atmosphere-ocean, ice

sheet - ocean boundaries) among other applications. Excluding degenerate cases, the

Navier-Stokes equations generally do not have exact solutions, so we rely on numerical

techniques (e.g. finite element, spectral, or operator splitting methods) instead.

Additional Considerations

While Preliminaries 1-3 are undoubtedly necessary to lay the groundwork for subse-

quent discussions of climate modeling, they paint far from the whole picture. Atmo-

spheric models don’t merely characterize fluid motion–they must also consider (among

other things) chemical aerosols, radiative absorption/emission/scattering, and anthro-

pogenic greenhouse gases. Ocean models must similarly account for biogeochemical

cycles, heat transfer, and thermohaline circulation, while ice-sheet models are inex-

tricably linked to boundary processes associated with stress, strain, and thermody-

namic balance. Even land surface models, which at first glance might appear the

most straightforward, must include dynamic vegetation, carbon sequestration, and

land-use changes to approach a comprehensive model that accounts for both human

and nature-induced dynamics [17, 22, 31].

At the global scale, modeling for any one of these processes incurs great compu-

tational expense; when considering them all in tandem, there is therefore a tradeo↵

2
Accounting for viscosity is one of the main distinguishing factors between the Navier-Stokes and

Euler equations, though we acknowledge that the Navier-Stokes can be appropriately modified to

model inviscid flow as well.
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between computational cost and resolution. One way global coupled models can

modulate this balance is by manipulating the size of the spatial grid cells; increasing

cell-size can reduce computational cost, but can simultaneously lose the granular-

ity needed to study sub-processes or sub-regions. From the sub-process perspective,

many physical phenomena that occur at scales smaller than that defined by a grid

cell must be approximated (i.e. parameterized) in order to be incorporated into cli-

mate models. When grid cells are so large as to encompass entire island nations or

areas of significant import, we thus lose the ability to characterize regional climate

and weather patterns [2]. As a result, we turn towards downscaling to develop higher

resolution models for specific regions of the world.

2.2 Regional Climate Models

Regional climate models (RCMs) are generated using largely the same concepts as

global coupled models, but with a smaller area of interest. We can feed in information

from global climate models to boundary conditions, while reserving the majority

of our computational power for higher resolution modeling within the target area.

This is known as dynamical downscaling in contrast to statistical downscaling [41],

which involves characterizing the statistical relationship between global and regional

observations in order to create regional climate projections. Dynamical and statistical

downscaling do not stand in direct opposition to one another, rather they are more

accurately conceptualized as complementary approaches to the same problem. A

more rigorous treatment of global coupled models, RCMs, and weather forecasting is

given in [41].

2.3 Coupled Model Intercomparison Project

Having introduced the fundamental concepts, we now turn towards climate modeling

in practice. In 1995, the World Climate Research Program came together to stan-

dardize the process for climate model evaluation. Most evaluation metrics focus on

hindcasting, wherein we compare historically observed data with model predictions–

an intuitive process designed to align model expectations with what is/has been

observed. The Coupled Model Intercomparison Project (CMIP) thus seeks to create

a centralized repository for climate modelers around the world to establish and open-

source benchmark results in a standardized fashion to facilitate better cross-model

comparison. With its seventh edition currently in development, we rely on the sixth
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edition (CMIP6) as our reference for state-of-the-art global climate models. While

many CMIP6 models agree on a wide-variety of metrics, they often do not agree when

it comes to rainfall projections [2], both amongst themselves and with observed data.

As discussed in Chapter 1, this can prove detrimental to rain-dependent regions that

would benefit greatly from reliable precipitation prediction. We further explore one

such region–East Africa–in Chapter 3, transitioning this discussion to an in-depth

commentary on the East African Climate Paradox.
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Chapter 3

Main Results

The East African Climate Paradox more pointedly refers to the failure of the masika

rains between March and May, the e↵ects of which are worsened by variable vuli rains

from October to December. We first characterize the discrepancy between modeled

and observed rainfall before exploring leading explanatory theories for this paradox.

3.1 The Paradox

The East African Paradox has been called as such since at least phase 3 of the

CMIP project. As shown in [43], not only did CMIP3 models predict higher mean

precipitation rates of both masika and vuli rains, they concurrently suggested less

intense droughts. The CORDEX project, a collection of 10 RCM models, similarly

overestimated rainfall in portions of East Africa (e.g. Ethiopia and the Congo basin)

with eight out of ten of the included models showing wet bias [18].

Moving from CMIP3 to more modern CMIP editions, it was further shown in

[36, 35] that CMIP5 models failed to capture the peak of the masika rains while si-

multaneously indicating an expected moisture influx. Ongoma et al. [33, 34] likewise

concludes that CMIP5 models point towards an increase in both extreme rainfall

events and mean precipitation during both masika and vuli. While a growing num-

ber of studies are evaluating the degree to which CMIP6 models contribute towards

resolving the paradox, early results are mixed. A handful of studies show CMIP6 out-

performs CMIP5 across a broad range of rainfall indices [10, 7], yet it has also been

shown that CMIP6 overpredicts masika rains while failing to capture the interannual

variability of the vuli rains [9, 30, 42].

In light of these established findings, we now attempt to understand why the East

African Climate Paradox exists beyond its descriptive characterization.
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Figure 3.1: Rainfall anomalies from observations (left line) and model projections
(right line). Averaged over CMIP5 models under the RCP8.5 scenario relative to
1901-2000 historical runs. Adapted from [40].

3.2 Leading Theories

There is general agreement as to which processes are linked to East African rainfall,

allowing us to identify sensible starting points in explaining rainfall discrepancies.

Among such starting points are variabilities in sea surface temperatures (SSTs) of the

Indian Ocean, the shifts of the intertropical convergence zone (ICTZ), Walker and

Hadley cells, the El Niño Southern Oscillation (ENSO), and fluctuating jet streams

(e.g. the Kenyan Turkana jet stream) [16]. The question we seek to resolve is not

necessarily how these influence rainfall, but rather what is driving change in these

underlying causal factors and, importantly, how can we better account for it?

3.2.1 Anthropogenic Forces

The first theory worthy of discussion is that anthropogenic forcings are contributing

to changes in underlying causal factors. We focus here on two key anthropogenic

drivers of change: emissions (i.e. carbon and aerosols) and land-use. In either case,

the picture is unclear. While some studies explicitly leave anthropogenic explanatory

mechanisms as an open-question [29, 46], those that provide more in-depth analysis

call for further research after arriving at mixed results [37, 40]. Namely, Rowell et

al. [40] analyzes simulations isolating the e↵ect of anthropogenic aerosol emissions.

By comparing a subset of CMIP5 models fed with fixed preindustrial aerosol levels

(CSIRO Mk3.6.0, HadGEM2-ES, and IPSL-CM5A-LR) against models that include

historically accurate aerosol levels (Can-ESM2, CCSM4, CSIRO, Mk3.6.0, GFDL,

CM3, and GISS-E2-R), no statistically significant impact of anthropogenic aerosols

emerges above the naturally expected variations. Despite this, existing research on

aerosol driven SST-variability suggests that perhaps the signals attributable to aerosol

11



levels are not adequately propagated throughout the model, resulting in dampened

observations of statistical significance [40] . Similar conclusions are drawn for land-use

e↵ects as well–though the underlying hypothesis may merit further study, particularly

given large-scale expected land-use shifts in the Lake Victoria and Congo basins, there

is no threshold for statistical significance reached by experiments isolating variable

land-use [40].

Even for greenhouse gas emissions, perhaps the most frequently discussed an-

thropogenic force in this context, we face both a lack of dedicated research studies

attributing carbon emissions to East African rainfall and a lack of robust evidence

supporting/rejecting hypotheses in those studies that do exist. It is well known that

greenhouse gases a↵ect some of the underlying causal factors of rainfall variability,

such as the southern shift of the ITCZ [13] and Indian Ocean Dipole [11], but all

papers reviewed universally cite the downstream e↵ects on East African rainfall as

an open problem.

3.2.2 Natural Variability

The natural variability theory posits that the observed droughts and changes in

masika/vuli rains are explained by the natural fluctuation and progression of the

East African climate system. In the absence of external forcings (both anthropogenic

and natural), the rainy season changes observed since the 1990s [40] would be un-

surprising if natural variability is the main mechanism of change. To some degree,

this notion is challenging to evaluate–even if the variability in an unforced climate

model allows for observed rainfall trends, we exist in a reality where external forcings

have, do, and will continue to exist. It is a theory nonetheless worth exploring, and,

accordingly, Rowell et al. [40] demonstrated that hindcasted rainfall shifts are not

statistically significantly explained solely by natural variability. This result, however,

was predicated on the notion of reliable decadal models of variability, an assumption

for which a number of studies have provided contrasting results.

For instance, several studies [11, 27, 37, 47] have attempted to categorize 21st

century drought patterns in the context of both historical and projected droughts, as

there is precedent for extended drought periods in East Africa in unforced climate

models. During an era in which unforced climate models would be appropriate due

to the negligible levels of both volcanic and anthropogenic emissions, there are at

least two documented cases of multi-decade drought patterns (1821-1835, 1879-1902)

[19, 40]. This further supports the idea that natural variability could, at least in part,
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be responsible for explaining recent drought patterns; however, this does not resolve

the question as to why current models are unable to identify such patterns.

Following the approach from [39], we assume the variability in climate projections

is comprised of both natural variability (�2
n) and inherent model variability (�2

m). In

evaluating the natural variability theory, we can thus compare the fraction of the total

variability (�2
tot) that is explained by �

2
n after propagating uncertainty throughout our

model. Rowell et al. [40] does exactly as such, showing that long-term rainfall pro-

jections (�
2
tot
�2
n

= 9.9 for 2070-2099) are far less attributable to natural variability than

short-term projections (�
2
tot
�2
n

= 4.2 and 2.2 for 2035-2064 and 2015-2044 respectively).

This brings into question the results regarding current observations, but supports the

larger idea that natural variability alone is not enough to explain the discrepancies

in the long run.

3.2.3 Unreliable Models

The final and most consequential theory questions the reliability of the models used

to forecast East African rainfall. There is a fundamental di↵erence between asserting

that the models need to be improved by incorporating more sophisticated represen-

tations of the complex drivers of rainfall (e.g. Indian Ocean Dipole, anthropogenic

forcings, SST variations) and asserting that the models are unreliable. The latter is

straightforwardly rejected by Rowell et al. [40], who instead argues that no claim

of unreliability can be made before systematically and rigorously understanding all

drivers of bias and uncertainty that constrain model projections. Given that di↵erent

CMIP models not only tend to produce inter-compatible (albeit erroneous) results

when it comes to East African rainfall projections, but also perform well on other,

non-East African related applications, there is strong evidence that modern mod-

els are not fundamentally unreliable. Rather, there is a seemingly universal call for

further research–to improve bias, variability, and uncertainty traces; to increase the

sophistication of subprocess modeling; and to enhance our understanding of anthro-

pogenic drivers of change.
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Chapter 4

Discussion

We now suggest promising avenues of research to expound upon and potentially re-

solve the open problems identified by the existing literature. At a broad-level, we

seek to increase resolution, improve our submodel components, or better account for

external forcings. Our dominant critique of current work is that though every study

reviewed encourages further research, all remain relatively ambiguous as to how novel

approaches should be designed to achieve better, higher-performing models. Here we

situate ourselves on the other end of the ambiguity spectrum by o↵ering specific and

concrete suggestions to resolve unsolved problems.

4.1 AI-enabled Climate Models

4.1.1 Computational E�ciency

As outlined in [14], one way in which neural networks can aid climate/weather fore-

casting is in freeing additional compute to be dedicated towards higher resolution

modeling. This could prove particularly apt in improving parameterization schemes

from a computational e�ciency perspective, a proof of concept for which has already

been established by [12, 15].

In particular, cloud fields and cloud formations are often parameterized, yet are

key precursors for precipitation to occur. We thus recommend improving computa-

tional e�ciency of cloud parameterization via neural networks, following an approach

similar to [20] in which a neural network maps temperature, humidity, pressure, and

ice mixing ratio variables to fine-resolution cloud properties (the cloud cover, the liq-

uid condensate mixing ratio, and the ice condensate mixing ratio). To the best of our

knowledge, downscaled CMIP5 and CMIP6 models, as well as dedicated CORDEX
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RCM models, do not implement a neural network approach to cloud parameteriza-

tion. The saved computational cost (which could even be boosted via neural pruning)

could thus be “reinvested” into modeling the (suspected) more complex drivers of East

African rainfall variability.

4.1.2 Physics Informed Neural Networks

As an addendum to the previous section, it is worth specifically citing Physics In-

formed Neural Networks (PINNs) as a high potential approach to incorporating ma-

chine learning into climate modeling. By using bespoke loss functions or imposing

physical-constraint boundaries on network parameters, PINNs seek to model real-

world phenomena while both reaping the benefits of deep learning and obeying laws

of physics. For instance, we might design a loss function

Ltot = LNN + �LP

where LNN represents a standard neural network loss function (e.g. MSE, Cross-

Entropy, Log Loss), LP represents a physics-inspired loss function, and � represents

a scaling parameter to adjust the relative importance of LNN and LP . While the

former evaluates how well a model predicts data within a training set, the latter

evaluates how well a model’s predictions conform to the laws of physics. As we min-

imize this hybrid loss function, we can push a model to learn a set of parameters

that is consistent with physical constraints. A potential design for LP is shown in

[21] when applied to cloud-precipitation reactions. Much is left to be done in this

space; however, preliminary results demonstrate promise in aiding uncertainty and

bias analyses [12, 23]. Given uncertainty/bias attribution is one of the primary chal-

lenges cited in resolving the natural variability theory, we suggest PINNs as an initial

exploration path to deepen our understanding of the uncertainty/bias encapsulated

by East African climate projections.

4.2 Teleconnection Network Approach

To the best of our knowledge, a network approach has not been implemented to resolve

issues surrounding the East African Climate Paradox. We outline here a framework

for identifying potentially obscured teleconnections that impact regional rainfall via

community detection and modularity analysis in a network-embedded climate system.

We define a network as a collection of nodes (vertices) and edges, wherein an

edge eij exists if some domain-specific relationship exists between nodes i and j. A
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useful analytical framework in network science is community detection, which seeks to

partition a network into distinct communities. Under a good partition, nodes within

a given community are more densely connected to each other and sparsely connected

to members of other communities. The performance of a given partition is usually

empirically measured via a modularity score Q, a popular definition for which is as

follows:

Q =
1

2m

X

i,j

(Aij �
kikj

2m
)�c(i)c(j) (4.1)

where A denotes the adjacency matrix, ki =
P

j Aij denotes the degree of node i,

m denotes the number of edges, and c(i) denotes the community of node i in the

Kronecker’s delta term. We thus have an optimization problem: we seek to maximize

Q over the set of possible partitions in order to identify distinct communities within

a network.

Returning to climate modeling, early work has sought to apply network science

techniques to climate networks [45]. We recommend generating a climate network

following the approach in [44]. Nodes represent gridded climate data, with corre-

sponding node states wi 2 Rm, where m indicates the number of variables of interest

encoded by a grid cell. Following from [44], we recommend, at minimum, m = 7, to

capture sea surface temperature, sea level pressure, geopotential height, precipitable

water, relative humidity, and horizontal/vertical wind speed. Node states are then

de-seasonalized to account for the inherent periodicity in many climate signals. We

finally construct edges based on correlations between grid cells over the relevant time

windows1. Here we deviate slightly from the recommendation in [44]; rather than

linking two cells with a weighted edge if their correlation exceeds some threshold as

measured by a linear (Pearson’s) correlation coe�cient, we instead recommend using

a correlation measure that captures both linear and nonlinear relationships. Namely,

we suggest computing the distance correlation, defined as

d
2
c(X, Y ) =

dCov2(X, Y )q
dVar2(X)dVar2(Y )

where dCov2(X, Y ) represents the distance covariance of random variables X and Y ,

while dVar2(X) represents the distance variance. We can express distance covariance

1
It is worth noting that this method of edge creation does not encapsulate physical space in its

structure. In other words, neighboring grid-cells in physical space might not be neighbors in the

generated network
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in terms of the traditional Pearson covariance (pCov), while distance variance is seen

as a special case of covariance in which X and Y are identical. Here we use (X 0
, Y

0)

and (X 00
, Y

00) to indicate i.i.d copies of X and Y .

dCov2(X, Y ) = pCov(
��X �X

0�� ,
��Y � Y

0��)� 2pCov(
��X �X

0�� ,
��Y � Y

00��)

We justify the choice of the distance correlation measure over other nonlinear cor-

relation measures based on its robustness to noise and inherent normalization. The

choice of a nonlinear correlation measure in general is justified due to the nonlin-

ear relationships in climate models that may arise naturally from statistical physics.

Importantly, the distance correlation still captures the linear relationships otherwise

identified by Pearson’s correlation coe�cient.

Once an appropriate climate network has been generated, we suggest community

detection (via one of the many community detection algorithms, e.g. the Louvain

method) as a method for identifying potentially novel teleconnections between net-

work communities (i.e. between regional East African cells and other regional/global

patterns). Similar work has already been conducted for other regions, showing some

promise in, at minimum, bolstering support for already established teleconnections.

By identifying collections of highly correlated grid cells, we may uncover latent or-

ganizational structure in community-community interactions. We hypothesize that

applying this community detection framework could further our understanding of the

causal factors of rainfall variability in East Africa.

4.3 Turkana Jetstream

As a final point of recommendation, we find the emerging body of research charac-

terizing the Turkana jetstream as particularly compelling. First identified in 1982

[25], the Turkana jetstream cuts across the Ethiopian highlands into the East African

highlands of Kenya and Tanzania. Though it is the principle vehicle for moisture flux

in the region (and therefore inherently linked to both arid and rainy seasons), it is

relatively understudied. In fact, CMIP5 and CMIP6 models are unable to explicitly

account for the low level jetstream (LLJ) through the Turkana channel; RCMs (i.e.

CORDEX models) similarly su↵er from nonstandard representations of LLJs [24].

Only in the last five years have we begun to develop a better understanding of

the Turkana jetstream on daily, annual, and decadal timescales. Explained in more-

depth by Munday et al. [32], we know from a dedicated field campaign (RIFTJet)

in 2021 that the jetstream is diurnal, strengthening during the night. On annual
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scales, the LLJ through the Turkana channel peaks in boreal spring and autumn,

closely aligning with masika and vuli. Most models identify an annual peak in March

[32]. Notably, a statistically significant negative correlation (via Pearson’s correlation

coe�cient) has been identified between LLJ strength and precipitation in a large

portion of East Africa (i.e. Tanzania, Kenya, and southern Ethiopia) [16, 25]. On

the decadal timescale, it is unclear whether broader trends are a↵ecting the Turkana

jetstream. While two of the three reanalyses conducted in [24] indicate a weakening

of the Turkana over recent decades, results from the RIFTJet campaign indicate that

the same models could underestimate its strength by as much as 75% [32].

The Turkana jetstream is thus an intriguing phenomenon worthy of additional

study, potentially unveiling crucial insights in resolving the East African Climate

Paradox.
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Chapter 5

Conclusion

Knowing the humanitarian implications of unexpected rainfall variability in East

Africa, high performance climate modeling is an imperative to enhance mitigation

and prevention strategies. Given the continued failure of the masika rains despite

a predicted increase in intensity and duration, there is a pressing need to resolve

the East African Climate Paradox. Our work provides an overview of the current

paradox while simultaneously identifying promising research avenues grounded in

novel application of mathematical theory (e.g. deep learning, complex networks) and

deeper probes into understudied physical phenomena (e.g. the Turkana jetstream).

Undoubtedly, it is crucial to continue researching this paradox, as its resolution could

prove beneficial to millions that call East Africa home.
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Lukiya Tazalika. Assessment of the Performance of CORDEX Regional Climate

Models in Simulating East African Rainfall. Journal of Climate, 26(21):8453–

8475, November 2013. Publisher: American Meteorological Society Section:

Journal of Climate. URL: https://journals.ametsoc.org/view/journals/

clim/26/21/jcli-d-12-00708.1.xml, doi:10.1175/JCLI-D-12-00708.1.

[19] Chaochao Gao, Alan Robock, and Caspar Ammann. Volcanic forcing of cli-

mate over the past 1500 years: An improved ice core-based index for cli-

mate models. Journal of Geophysical Research: Atmospheres, 113(D23),

2008. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1029/2008JD010239.

URL: https://onlinelibrary.wiley.com/doi/abs/10.1029/2008JD010239,

doi:10.1029/2008JD010239.

22

https://royalsocietypublishing.org/doi/epdf/10.1098/rsta.2020.0083
https://royalsocietypublishing.org/doi/epdf/10.1098/rsta.2020.0083
https://doi.org/10.1098/rsta.2020.0083
https://journals.ametsoc.org/view/journals/apme/37/11/1520-0450_1998_037_1385_annafa_2.0.co_2.xml
https://journals.ametsoc.org/view/journals/apme/37/11/1520-0450_1998_037_1385_annafa_2.0.co_2.xml
https://doi.org/10.1007/s00382-020-05350-y
https://journals.ametsoc.org/view/journals/clim/26/21/jcli-d-12-00708.1.xml
https://journals.ametsoc.org/view/journals/clim/26/21/jcli-d-12-00708.1.xml
https://doi.org/10.1175/JCLI-D-12-00708.1
https://onlinelibrary.wiley.com/doi/abs/10.1029/2008JD010239
https://doi.org/10.1029/2008JD010239


[20] Brian Henn, Yakelyn R. Jauregui, Spencer K. Clark, Noah D. Brenowitz,

Jeremy McGibbon, Oliver Watt-Meyer, Andrew G. Pauling, and Christo-

pher S. Bretherton. A Machine Learning Parameterization of Clouds

in a Coarse-Resolution Climate Model for Unbiased Radiation. Jour-

nal of Advances in Modeling Earth Systems, 16(3):e2023MS003949, 2024.

eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1029/2023MS003949. URL:

https://onlinelibrary.wiley.com/doi/abs/10.1029/2023MS003949, doi:

10.1029/2023MS003949.

[21] Alice V. Hu and Zbigniew J. Kabala. Predicting and Reconstructing

Aerosol–Cloud–Precipitation Interactions with Physics-Informed Neural Net-

works. Atmosphere, 14(12):1798, December 2023. Number: 12 Publisher:

Multidisciplinary Digital Publishing Institute. URL: https://www.mdpi.com/

2073-4433/14/12/1798, doi:10.3390/atmos14121798.

[22] H. G. Kaper. Mathematics and climate. Society for Industrial and Applied

Mathematics SIAM Market Street, Floor 6, Philadelphia, PA 19104, Philadel-

phia, Pennsylvania, 2013.

[23] K. Kashinath, M. Mustafa, A. Albert, J-L. Wu, C. Jiang, S. Esmaeilzadeh,

K. Azizzadenesheli, R. Wang, A. Chattopadhyay, A. Singh, A. Manepalli,

D. Chirila, R. Yu, R. Walters, B. White, H. Xiao, H. A. Tchelepi, P. Mar-

cus, A. Anandkumar, P. Hassanzadeh, and null Prabhat. Physics-informed

machine learning: case studies for weather and climate modelling. Philosoph-

ical Transactions of the Royal Society A: Mathematical, Physical and Engi-

neering Sciences, 379(2194):20200093, February 2021. Publisher: Royal Soci-

ety. URL: https://royalsocietypublishing.org/doi/full/10.1098/rsta.

2020.0093, doi:10.1098/rsta.2020.0093.

[24] James A. King, Sebastian Engelstaedter, Richard Washington, and

Callum Munday. Variability of the Turkana Low-Level Jet in Re-

analysis and Models: Implications for Rainfall. Journal of Geophys-

ical Research: Atmospheres, 126(10):e2020JD034154, 2021. eprint:

https://onlinelibrary.wiley.com/doi/pdf/10.1029/2020JD034154. URL:

https://onlinelibrary.wiley.com/doi/abs/10.1029/2020JD034154,

doi:10.1029/2020JD034154.

23

https://onlinelibrary.wiley.com/doi/abs/10.1029/2023MS003949
https://doi.org/10.1029/2023MS003949
https://doi.org/10.1029/2023MS003949
https://www.mdpi.com/2073-4433/14/12/1798
https://www.mdpi.com/2073-4433/14/12/1798
https://doi.org/10.3390/atmos14121798
https://royalsocietypublishing.org/doi/full/10.1098/rsta.2020.0093
https://royalsocietypublishing.org/doi/full/10.1098/rsta.2020.0093
https://doi.org/10.1098/rsta.2020.0093
https://onlinelibrary.wiley.com/doi/abs/10.1029/2020JD034154
https://doi.org/10.1029/2020JD034154


[25] J. H. Kinuthia and G. C. Asnani. A Newly Found Jet in North

Kenya (Turkana Channel). Monthly Weather Review, 110(11):1722–1728,

November 1982. Publisher: American Meteorological Society Section:

Monthly Weather Review. URL: https://journals.ametsoc.org/view/

journals/mwre/110/11/1520-0493_1982_110_1722_anfjin_2_0_co_2.xml,

doi:10.1175/1520-0493(1982)110<1722:ANFJIN>2.0.CO;2.

[26] Peter Hjort Lauritzen. Discretization strategies.

[27] Rachel L. Lupien. Past climate unravels the eastern African paradox. Na-

ture, 620(7973):279–280, August 2023. Bandiera abtest: a Cg type: News

And Views Publisher: Nature Publishing Group Subject term: Climate change,

Climate sciences, Hydrology. URL: https://www.nature.com/articles/

d41586-023-02297-y, doi:10.1038/d41586-023-02297-y.

[28] Bradfield Lyon. Seasonal Drought in the Greater Horn of Africa and Its Recent

Increase during the March–May Long Rains. Journal of Climate, 27(21):7953–

7975, November 2014. Publisher: American Meteorological Society Section:

Journal of Climate. URL: https://journals.ametsoc.org/view/journals/

clim/27/21/jcli-d-13-00459.1.xml, doi:10.1175/JCLI-D-13-00459.1.

[29] Bradfield Lyon and N. Vigaud. Unraveling East Africa’s Climate Para-

dox: Patterns and Mechanisms. pages 265–281. June 2017. doi:10.1002/

9781119068020.ch16.

[30] Dawido Magang, Moses Ojara, Lou Yunsheng, and Henry Philemon. Future

climate projection across Tanzania under CMIP6 with High-Resolution Re-

gional Climate Model, January 2024. URL: https://www.researchsquare.

com/article/rs-3862295/v1, doi:10.21203/rs.3.rs-3862295/v1.

[31] Kendal McGu�e and Ann Henderson-Sellers. The Climate Modelling Primer.

In The Climate Modelling Primer. John Wiley & Sons, Incorporated, United

Kingdom, 2014.

[32] Callum Munday, Sebastian Engelstaedter, Gilbert Ouma, Geo↵rey Ogutu,

Daniel Olago, Dennis Ong’ech, Thomas Lees, Bonface Wanguba, Rose Nkatha,
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