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Abstract

By extending a topological control mechanism originally proposed in [8],

we seek to mediate Turing patterns on unweighted, undirected networks

through topological tuning. We conduct numerical simulations to high-

light properties of our mechanism while establishing theoretical expecta-

tions for the special case of the ring lattice. While our primary contribu-

tion is proving boundedness results involved in targeted destabilization,

we also contribute to the growing body of literature regarding network

Turing patterns across graph generation models.

We first contextualize network Turing patterns by rigorously developing

the ideas of Turing instability, pattern-enabled systems, and Laplacian

matrix properties. We thus use early chapters to carve a natural path to-

wards the original results found in later chapters, starting with generalized

reaction-di↵usion systems and building to mean-field approximations. As

we assume no prior knowledge, this work is suitable for the young math-

ematician interested in complex networks, pattern formation, and matrix

theory. Importantly, this work stands against a backdrop of real-world

applications, motivating the importance of this field in modeling natural

phenomena.
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Notation

G A graph. Assumptions on edge and structural restraints are specified
in context

eij Edge between nodes i and j

Ni One-hop neighborhood of node i

A Adjacency matrix of a graph

D Diagonal degree matrix of a graph

L Laplacian matrix, defined here as A�D in accordance with existing
literature on network Turing patterns (rather than the more common
D � A)

J Jacobian matrix

⇤↵ Laplacian eigenvalue, not to be confused with �↵

�
(↵) Laplacian eigenvector

�↵ Dispersion relation eigenvalue, not to be confused with ⇤↵

N Number of nodes

ki Degree of node i

x Position vector. Used for continuous media reaction-di↵usion system

t Time

� Laplacian operator

�disc Discriminant of a polynomial, not to be confused with �

S Reaction-di↵usion system, parametrized by di↵usion coe�cients and
reaction functions. Defined separately from the network on which
the system operates

Sp Set of pattern-enabled systems
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�ij Kronecker’s delta. Not to be confused with single-subscript delta
variables (e.g. �⌧ )

M
† Conjugate transpose of matrix M . Note we avoid the use of M⇤ to

indicate the conjugate transpose

tr(M) Trace of matrix M

det(M) Determinant of matrix M

Re(x) Real component of x

Im(x) Imaginary component of x

ı Imaginary number, ı =
p
�1. Not to be confused with index i

h·i Average value brackets. Used primarily in context of average degree

u, v Species variables in the two species reaction-di↵usion system

Du, Dv Di↵usion constants, by convention Du, Dv > 0

f(·), g(·) Reaction functions
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Chapter 1

Introduction

1.1 Background

1.1.1 Turing Patterns

In a 1952 paper [39], Alan Turing introduced a theoretical framework to explain

the formation of complex patterns in biological systems. Inspired by the process of

morphogenesis, this paper sought to describe the seemingly spontaneous emergence of

patterns from uniform initial conditions. Though the most easily identifiable examples

of these “Turing patterns” are found in the animal kingdom (e.g. zebra stripes,

gira↵e spots, fish skin), Turing’s work has proven successful in describing phenomena

across diverse domains, including but not limited to predator-prey dynamics [36, 37,

22], galactal formations [41], cell signaling pathways [16, 34], brain networks [29, 7],

molecular crystallization [15], and epidemic modeling [38, 42, 13].

Notably, recent decades have expanded studies of Turing patterns beyond just

continuous media, o↵ering valuable insights into the dynamics of discrete structures

and systems as well.

1.1.2 Reaction Di↵usion Equations

The mathematical framework underpinning Turing’s theory of pattern formation is

the reaction-di↵usion system. To illustrate, we’ll consider a prototypical example of

an activator-inhibitor system in continuous media.
8
><

>:

@u

@t
= f(u, v) +Du�u

@v

@t
= g(u, v) +Dv�v

(1.1)

In the system described by (1.1), u is an activator whose growth is suppressed by

v, an inhibitor. Both u(x, t) and v(x, t) are taken to represent the concentration
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of a chemical species as a function of position and time. The functions f(u, v) and

g(u, v) determine the reaction dynamics, while the Laplacian term accounts for their

di↵usion. Di↵usion coe�cients Du and Dv are positive by convention. This formula-

tion for the di↵usive term is sound under the assumption of Fick’s law, which states

that the flux of a substance across a medium is proportional to its concentration

gradient [23]. Turing patterns arise when the background medium develops stable

activator-rich and activator-poor regions from uniform initial conditions.

(a) Zebra stripes (b) Reticulated gira↵e (c) Humphead Wrasse

(d) Bismuth nano-crystals (e) Sand dunes (f) Spiral galaxy

Figure 1.1: Turing patterns in nature [15]

Both the presence and nature of the formed patterns depend on the parameters of

the system. For instance, by tuning the ratio of the di↵usion coe�cients, the system

can be pushed from a state of stability, in which Turing patterns do not form, to a

state of instability, where patterns spontaneously emerge, and vice versa.

The reaction-di↵usion system contains the partial di↵erential equations that de-

scribe concentrations of species as they interact and move about a continuous space;

however, when using a network as the underlying substrate of interaction, we can

adapt a discretized version of the reaction-di↵usion system. We consider a system

of di↵erential equations for each node and use the network’s Laplacian matrix to

account for the di↵usion of species.
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8
>>>>><

>>>>>:

d

dt
ui = f(ui, vi) +Du

NX

j=1

Lijuj

d

dt
vi = g(ui, vi) +Dv

NX

j=1

Lijvj

(1.2)

The discrete formulation is motivated by the fact that Turing patterns in real-

world scenarios are often better understood through network structures. In ecological

systems, where nodes represent habitat patches, we can study quantized populations

of predators and prey interacting in a patchy environment [44]. In multicellular

dynamics, where nodes represent cells, we can study neuronal signaling pathways

[29], morphogenesis [20], or even cytokine networks [17]. In epidemiology, where

nodes represent people, we can study how a disease propagates through a population

[38]. Considering the prevalence of network structures, there is no dearth of examples

where network Turing patterns merit study.

1.1.3 Structurally Mediated Patterns

As in the continuous case, the emergence of Turing patterns on networks can be con-

trolled by manipulating the system parameters; however, this concept does not always

map well to real-world scenarios. Consider the aforementioned example of disease

propagation across a network of people. Under the susceptible-infected-susceptible

(SIS) framework, though we can see the e↵ect of altering infection/recovery/di↵usion

rates mathematically, it can be far more di�cult to change the actual rates of infec-

tion/recovery/di↵usion in practice. Rather than manipulating the system parameters,

we can instead explore the topology of the underlying network, wherein structural

changes may more readily correspond to real-world scenarios. In an epidemiology set-

ting, this might translate to implementing quarantine measures or immunization cam-

paigns to alter the disease-transmissible connections (edges) between people (nodes),

while in ecological settings this might translate to climate-change induced flooding of

land-bridges (edges) that connect two or more habitats (nodes). It is thus a worthy

endeavor to analyze the interplay between network structure and pattern formation.

As such, this work aims to provide a rigorous treatment of topologically mediated

network Turing patterns to shed insight on real-world phenomena.
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1.2 Overview of Discussion

The early chapters of this dissertation are dedicated to building and exploring the

foundations for Turing patterns on networks. Chapter 2 provides a rigorous deriva-

tion of stability conditions, while Chapters 3 and 4 explore existing theoretical under-

standings of pattern-enabled systems and stabilization. This conversation naturally

transitions to structural control mechanisms, during which we concretely identify the

scope of original results presented in Chapter 5. We summarize and identify related

open research questions in Chapter 6.
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Chapter 2

Formal Derivation of Stability

Conditions

We start with a general vectorized form of the network reaction-di↵usion system.

d

dt
wi = F(wi)| {z }

reaction term

+

di↵usion termz }| {

K

NX

j=1

AijG(wj �wi)

where wi 2 Rm, F : Rm ! Rm, G : Rm ! Rm, and K 2 R is constant. The dynamics

of m species of interest are locally specified at node i by F (the reaction), whereas

G controls the dynamics of species moving between nodes i and j for j 2 Ni (the

di↵usion).

2.1 Preliminary 1: Assumptions

Following inspiration from activator-inhibitor systems, we assumem = 2 and a linear,

species-independent1 design of G, allowing us to decompose the general formulation

into the commonly studied two-species system. Namely, when

wi =

✓
ui

vi

◆
, F(wi) =

✓
f(ui, vi)
g(ui, vi)

◆
, G =

✓
cu(uj � ui)
cv(vj � vi)

◆
=)

1
This design is an intentional but not mandatory choice following from Fick’s law. Additional

mechanisms can be designed that account for a given species’ di↵usion as a function of the concen-

trations of all species rather than just that of the di↵using species. As an example, such a design

might prove apt for predator-prey scenarios in which the movement of a prey species intuitively

depends on both surrounding prey and predator populations.
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8
>>>>><

>>>>>:

d

dt
ui = f(ui, vi) +Du

NX

j=1

Lijuj

d

dt
vi = g(ui, vi) +Dv

NX

j=1

Lijvj

(2.1)

where Du = Kcu and Dv = Kcv represent di↵usion coe�cients. It is worth clarifying

that we define the Laplacian as L = A � D, following the conventions of existing

literature on network reaction-di↵usion systems. For the remainder of this work,

we assume connected graphs unless explicitly stated otherwise. In the absence of

di↵usion, we assume there exists a linearly stable stationary state (u?
i , v

?
i ), implying

the following conditions:
8
><

>:

tr(J?) = fu + gv < 0

det(J?) = fugv � fvgu > 0

f(u?
i , v

?
i ) = g(u?

i , v
?
i ) = 0

(2.2)

where partial derivatives and J
?, indicating the Jacobian of the system in (2.1), are

evaluated at the stationary state. Unless otherwise indicated, this will be assumed

for all partial derivatives for the remainder of this work. Here the stationary state is

a homogeneous solution, as G annihilates in zero [9].

2.2 Preliminary 2: Dispersion Relation

Allowing di↵usion to occur, we now consider the conditions under which the station-

ary state remains stable by linearizing a small perturbation about (u?
i , v

?
i ).

For (ui, vi) = (u?
i + �ui, v

?
i + �vi), disregarding higher order terms from the first-order

Taylor approximation yields

8
>>>>><

>>>>>:

d

dt
(�ui) = fu�ui + fv�vi +Du

NX

j=1

Lij�uj

d

dt
(�vi) = gu�ui + gv�vi +Dv

NX

j=1

Lij�vj

(2.3)

L is diagonalizable, so we can express �ui and �vi in terms of the orthonormal eigen-

vectors of L.

�ui =
NX

↵=1

c↵(t)�
(↵)
i �vi =

NX

↵=1

b↵c↵(t)�
(↵)
i (2.4)
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Combining (2.3) and (2.4), we achieve the following:

NX

↵=1

c
0
↵(t)�

(↵)
i = fu

NX

↵=1

c↵(t)�
(↵)
i + fv

NX

↵=1

b↵c↵(t)�
(↵)
i +Du(

NX

↵=1

c↵(t)⇤↵�
(↵)
i )

NX

↵=1

b↵c
0
↵(t)�

(↵)
i = gu

NX

↵=1

c↵(t)�
(↵)
i + gv

NX

↵=1

b↵c↵(t)�
(↵)
i +Dv(

NX

↵=1

b↵c↵(t)⇤↵�
(↵)
i )

Using the linear independence of eigenvectors, we get a system of equations2 for each

of N eigenmodes, indexed by ↵.

c
0
↵(t) = fuc↵(t) + fvb↵c↵(t) +Duc↵(t)⇤↵

b↵c
0
↵(t) = guc↵(t) + gvb↵c↵(t) +Dvb↵c↵(t)⇤↵

Limit-cycle solutions are possible for a periodic Jacobian [9], but we focus here on non-

periodic solutions. For non-periodic solutions, c↵(t) takes the form of c↵(t) = Ce
�↵t

where C is a constant. Simplifying and re-writing in matrix form, we obtain an im-

portant result: the dispersion relation that connects �↵,⇤↵, and system parameters.

�↵

✓
1
b↵

◆
=

✓
fu +Du⇤↵ fv

gu gv +Dv⇤↵

◆✓
1
b↵

◆
(2.5)

We henceforth distinguish between �↵ and ⇤↵ as the dispersion and Laplacian eigen-

values respectively.

2.3 Preliminary 3: Stability Conditions

Closer analysis of the dispersion relation shows us its importance, as stability condi-

tions are dictated by the sign of Re(�↵). Re(�↵) < 0 implies stability, as perturbations

will decay with time and return to the stationary state. If, for any ↵, Re(�↵) > 0,

the perturbations will grow exponentially, leading to pattern formation. The point at

which Re(�↵) = 0 is thus deemed the instability threshold, representing the transition

point for pattern formation.

Proposition 2.3.1. Given stability conditions in terms of the sign of Re(�↵), we can

write equivalent stability conditions in terms of the sign of the Jacobian’s determinant

evaluated at (u?
, v

?).
2
More generally, we get N m-dimensional systems, for a total of Nm equations grouped by index.
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Proof. The characteristic polynomial of (2.5) is quadratic in �↵, yielding an exact so-

lution: �↵ = (12)(tr(J↵)±
p

(tr(J↵))2 � 4det(J↵)). Let �disc denote the discriminant.

For �disc  0, Re(�↵) = tr(J↵), which is always negative given the assumptions in

(2.2) and the real, non-positive eigenvalues of L, which we know via the Courant-

Fischer-Weyl principle. We are thus only interested in discussing scenarios where

�disc > 0 and we take the positive root of the discriminant, resulting in the following

implications on the sign of the determinant.

Case 1 : Re(�↵) = 0 =) det(J↵) = 0

Case 2 : Re(�↵) > 0 =) det(J↵) < 0

Case 3 : Re(�↵) < 0 =) det(J↵) > 0

When taking a closer look at the determinant, we note that its sign is specifically

controlled by the term ⇤↵(fuDv + gvDu). When su�ciently dominant, it will push

the determinant into the negative (unstable) region.

(
tr(J↵) = fu + gv + ⇤↵(Du +Dv) < 0 (always true)

det(J↵) = ⇤2
↵DuDv + ⇤↵(fuDv + gvDu) + fugv � fvgu

(2.6)

It is apparent that by strategically manipulating di↵usion coe�cients and/or the

reaction functions f and g, we can induce instability; however, when holding such

system parameters constant, the dispersion relation becomes a function of Laplacian

eigenvalues. As the Laplacian spectrum serves as a proxy for the structure of the

underlying network, we can thus strategically manipulate network structure to induce

instability as well.
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Chapter 3

Pattern-Enabled Systems

We introduce the descriptor pattern-enabled to describe systems whose parameters

allow for the formation of patterns. Importantly, this does not guarantee the presence

of Turing patterns, as we still depend on the Laplacian eigenvalues of the network.

After establishing the necessary (but insu�cient) parameter conditions for pattern

formation, we discuss theoretical understandings of network Turing patterns through

eigenvector localization and mean-field theory.

Given the assumptions introduced in (2.2), let S denote a reaction-di↵usion system

parametrized by di↵usion coe�cients (Du, Dv) and reaction functions (f, g). Let Sp

denote the set of systems for which pattern formation is possible.

Definition 3.0.1. If S 2 Sp, S is a pattern-enabled system.

3.1 Parameter Restrictions

3.1.1 Reaction Function

Proposition 3.1.1. Given the assumptions in (2.2), fu < 0 < gv or gv < 0 < fu is

a necessary condition for S 2 Sp.

We begin by re-visiting the conditions of the stationary state Jacobian introduced

in (2.6), stated here again for ease.
(
tr(J↵) = fu + gv + ⇤↵(Du +Dv) < 0

det(J↵) = ⇤2
↵DuDv + ⇤↵(fuDv + gvDu) + fugv � fvgu > 0

When both fu, gv > 0, we violate our original assumption on the stability of

the stationary state in the absence of di↵usion. When both fu, gv < 0, the system

is uninteresting, as the stability conditions are always fulfilled. We thus require

fu < 0 < gv or gv < 0 < fu for instability.
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3.1.2 Di↵usion Ratio

Noting that Dv = (fvgu� fugv �⇤↵gvDu)(⇤2
↵Du+⇤↵fu)�1 when Re(�↵) = 0, we can

generate bifurcation curves in (Du, Dv) space to illustrate regions of stability.

(a) Bifurcation Curve:
Sample stability regions for ⇤↵

(b) Dispersion Curve:
Continuous dispersions for changing �

Figure 3.1: System Parameter Curves

Each curve (see Figure 3.1a) splits the plane into stable and unstable regions for

a given Laplacian eigenvalue, while points along the curve represent (Du, Dv) pairs

at a mode’s instability threshold. Global stability is achieved for (Du, Dv) pairs that

lie below the bifurcation curve for all eigenvalues. Given both the vertical asymptote

( fu
�⇤↵

) and Dv-intercept (fvgu�fugv
⇤↵fu

) are inversely proportional to ⇤↵, it is observed

that the global stability region for large (Du, Dv) is controlled by small Laplacian

eigenvalues, while the opposite is true for small (Du, Dv).

Proposition 3.1.2. Given the assumptions in (2.2), � > �c is a necessary condition

for S 2 Sp.

Let � denote the di↵usion coe�cient ratio, Dv
Du

. Manipulating Du shifts the disper-

sion curve horizontally, while manipulating � has the e↵ect of vertically shifting the

continuous dispersion curve as shown in Figure 3.1b and [30]. For the case in which

the maximum value of the dispersion curve is 0, (i.e. Re(�)max = 0), let �c denote the

critical di↵usion coe�cient ratio. For � > �c, an eigenmode can become unstable,

while � < �c pushes the system back towards stability, as Re(�↵) will always be less

12



than 0. Pattern-enabled systems thus require a choice of � such that the dispersion

curve crosses into the positive region, which, under our assumptions, means � > �c.

3.2 Random Networks

We now couple our discussion of pattern-enabled systems with network structures.

Random networks, suitable for modeling a diverse array of phenomena, are a nat-

ural starting point from which to build. Here we briefly review results for popular

generation models.

3.2.1 Models

Erdős-Rényi (ER): An ER graph is parametrized by N and p, where N 2 Z+ and

0  p  1. N indicates the number of nodes, while an edge exists between each pair

of nodes with independent probability p.

Watts-Strogatz (WS): A WS graph has an additional parameter , usually pre-

sumed to be an even integer. The graph is initialized as a ring lattice, wherein each

node is connected to its nearest 
2 neighbors on either side. In this model, each edge

eij is independently re-wired with probability p to some new edge eil, where node l is

chosen uniformly at random while avoiding self-loops and edge duplication.

Barabási-Albert (BA): BA models produce scale-free networks with power-law de-

gree distributions. A BA graph is characterized by two parameters, N and µ. As

before, N denotes the number of nodes, while µ is typically presumed to be a positive

integer smaller than N . The graph begins with an initial set of µ0 � µ connected

nodes. At each step, a new node is added to the graph, along with µ edges that

connect it to existing nodes. The probability of connecting the new node to an exist-

ing node i is proportional to the degree of node i, following the idea of preferential

attachment. This results in a topology wherein a few nodes acquire a disproportion-

ately high number of connections. Growth proceeds until the target number of nodes

is reached.

3.2.2 Pattern-Enabled Parameter Space

As shown in [19], the parameter spaces in which Turing patterns form are quite dif-

ferent for random graphs from di↵erent generation models. For ER graphs, when

manipulating N and p such that the average degree hki remains the same, the

stability-instability regions also remain nearly the same, suggesting a parameter

13



space highly dependent on hki. This makes some intuitive sense, as the degree

to which the Laplacian spectrum can change is limited for constant hki, noting

Nhki =
PN

i=1 ki = �tr(L) = �
PN

↵=1 ⇤↵. For ER graphs in particular, Laplacian

spectra are quite similar for graphs with equal hki, further supporting numerical

results in [19]. Contrarily, WS graphs do not show the same consistency across av-

erage degrees, instead forming Turing pattern parameter spaces highly dependent on

graph structure. Similar structural dependence is also found in scale-free networks,

motivating further study as to how the Laplacian eigenvalues and eigenvectors depend

on structure. Though not fully explored in [19], it is suggested that the di↵erences

are motivated by Laplacian eigenvector localization e↵ects.

3.3 Localization

It is a well known phenomenon that eigenvectors tend to localize under certain con-

ditions [18], often measured using an inverse participation ratio (IPR)[25].

IPR(�) =

P
i(�i)4

(
P

i(�i)2)2
(3.1)

Bounded between 1
N and 1, the IPR indicates the degree to which an eigenvector’s

“weight” is spread across its components; highly localized eigenvectors, where just

a few components are responsible for the majority of the vector’s weight, will have

higher IPRs. It has been empirically shown that localization e↵ects are generally

more pronounced as degree heterogeneity increases; however, despite di↵erent lev-

els of degree heterogeneity, ER, WS, and BA graphs alike all demonstrate strong

degree-eigenvalue localization [18]. When nodes are sorted by decreasing degree and

eigenvalues by decreasing absolute value, an eigenvector’s characteristic localization

degree (k↵c) tends to correlate with its eigenvalue index—this is what is meant by

degree-eigenvalue localization. An in-depth treatment of Laplacian eigenvector local-

ization for large random networks is given in [18].

Conjecture 3.3.1. For network Turing patterns on random graphs, local fields can

be well-understood and approximated via a degree-dependent global mean-field.

Notably, the strong degree-eigenvalue localization inspires the collective treat-

ment of node dynamics with similar degrees. Adapting a similar approach to [31],

Nakao and Mikhailov [30] provide empirical evidence for a mean-field approach to

understanding pattern formation based on characteristic degrees of eigenvectors–an

approach particularly well-suited to large networks with high degree heterogeneity.
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The key insight to this approach is approximating a node’s local-field by a global

mean field. This approximation is shown for a species u below, where an identical

process can be followed for species v.

d

dt
ui = f(ui, vi) +Du(h

(u)
i � kiui) where

h
(u)
i =

NX

i=1

Aijuj ⇡ kiH
(u) and H

(u) =
NX

j=1

(
kj

ktotal
)uj

Substituting in the approximation and combining with results for species v, we arrive

at the global mean-field dynamics.

8
><

>:

d

dt
ui = f(ui, vi) +Duki(H

(u) � ui)

d

dt
vi = g(ui, vi) +Dvki(H

(v) � vi)
(3.2)

Turing patterns have been shown in numerical simulations to be well-understood un-

der this approximation, providing results consistent with the notion of a characteristic

localization value controlled by the mobility of species (e.g. for u, k↵c / �⇤↵ / 1
Du

).

A full theoretical understanding is yet to be achieved as to why this is the case; how-

ever, a leading theory posits that networks with small diameters (e.g. small-world

networks) facilitate fast di↵usional mixing, which would allow us to explain pattern

formation via a degree-based global mean-field approximation [30]. Ultimately, intu-

itions gleaned from the mean-field treatment of network Turing patterns leads us to

question how localization e↵ects might a↵ect topological control mechanisms. With

a robust understanding of instability conditions, pattern-enabled systems, and a pre-

liminary theoretical framework to understand network Turing patterns, we are now

ready to centralize the discussion in topology induced instability.
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Chapter 4

Structural Tuning

We now supplement the discussion of necessary system conditions introduced in Chap-

ter 3 with structural control mechanisms, defined here as strategic changes made to a

network’s topology to induce desirable Turing patterns. At the lowest level of abstrac-

tion, we focus on characteristics of Laplacian matrices, as we are essentially tuning the

network until its Laplacian spectrum is desirable. At the highest level of abstraction,

this is motivated by mapping real-world interventions to structural control strategies,

leveraging mathematical insights to better understand formed patterns.

Most network typologies categorize networks by their structure and edge con-

straints, giving rise to temporal networks, multiplex graphs, hypergraphs, and trees

among others, each of which typically has edges characterized as weighted/unweighted

and directed/undirected. As topological tuning is still an emerging field, much of the

early work has been dedicated to first understanding pattern formation on the afore-

mentioned network types rather than structurally-mediating patterns [40, 4, 35, 3, 33].

Acknowledging the broad set of network types that similarly merit further study, we

restrict our discussion here to undirected networks, with a particular emphasis on

unweighted edges as well.

4.1 Laplacian Interventions

4.1.1 Stabilization via Re-weighting

Given a pattern-enabled system on an undirected graph with at least one unstable

mode, how can we directly alter the Laplacian matrix to restore global stability?

Theorem 4.1.1. Assume an undirected graph G and pattern-enabled system S 2 Sp.

If at least one mode is unstable, there exists some Laplacian matrix L
⇤ such that if L

is replaced with L+ L
⇤, global stability will be restored.
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This theorem follows from a “global topological control” mechanism adapted from

[8], in which Cencetti et al. outline a procedure to manually push Laplacian eigen-

values into the stability region:

1. For each mode l, choose a �l such that (⇤l + �l) yields a dispersion relation

eigenvalue with negative real component.1 If already stable, set �l = 0.

2. Define a diagonal matrix D
⇤ such that D⇤

ll = �l.

3. Calculate L
⇤ = �D⇤�T where � is a unitary matrix with orthonormal eigen-

vectors of L as its columns. 2

4. Set Lc = L+ L
⇤, henceforth deemed the controlled Laplacian

Lemma 4.1.1. If L is Laplacian, Lc is also Laplacian.

To substantiate this claim, we leverage strategies from [8] to show: 1) the elements

of Lc are real and 2) column entries sum to zero. We begin by proving the entries of

Lc are real.

Proof. Entries of Lc can be explicitly written in terms of eigenvalues, eigenvector

entries and �-shifts.

Lc = L+ L
⇤ = �D�T + �D⇤�T = �(D +D

⇤)�T =)

(Lc)ij =
nX

k=1

�
(k)
i �

(k)
j (⇤k + �k)

For undirectedG, the eigenvalues, �-shifts, and eigenvector entries are all real. There-

fore (Lc)ij 2 R.

In the above proof, we also implicitly show the eigendecomposition of Lc, with

eigenvalues ⇤↵ + �↵ for ↵ = 1, 2, . . . , N . Turning our attention to the column sums,

we prove the final requirement for Lc to be Laplacian.

1
Note that there is no sign guarantee on �l, as we can push the eigenvalue to either side of the

unstable region of the dispersion relation. The original publication does not specify a convention.
2
Since L is real symmetric Laplacian, we can choose an eigenbasis with all real eigenvector entries.

We thus write �
T
rather than the conjugate transpose �

†
, knowing �

†
= �

T
= �

�1
in this case.
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Proof. We expand the definition of the Laplacian eigenvalue in terms of the adjacency

matrix

⇤↵�
(↵)
i =

X

j

Lij�
(↵)
j

=
X

j

(Aij � �ijkj)�
(↵)
j

=
X

j

Aij�
(↵)
j � ki�

(↵)
i

=
X

j

Aij�
(↵)
j �

X

m

Aim�
(↵)
i

Summing over i, we show
P

i �
(↵)
i = 0, so long as �(↵) does not correspond to ⇤↵ = 0.

X

i

⇤↵�
(↵)
i =

X

i,j

Aij�
(↵)
j �

X

i,m

Aim�
(↵)
i = 0

=)
X

i

�
(↵)
i = 0

When ⇤↵ = 0, the summation becomes 0 directly. Using this information, the column

sums of L⇤ therefore equal 0.

X

i

L
⇤
ij =

X

i,k

�
(k)
i �

(k)
j �k

=
X

k

�
(k)
j �k

X

i

�
(k)
i

= 0

The column sums for both L and L
⇤ are zero, since we already know L is Laplacian.

We now arrive at the desired result for Lc.

X

i

(Lc)ij =
X

i

Lij +
X

i

L
⇤
ij = 0

We re-state without proof the complementary results that if L is balanced and sym-

metric, so is Lc, with full details provided in [8]. The eigenvalues of Lc are, by

construction, all stable. In combination with Lemma 4.1.1, we have now shown The-

orem 4.1.1 to be true.

As Lc is Laplacian, we can interpret it as representing an underlying graph.

Though the shift from L ! Lc is, superficially, a strategy to shift eigenvalues, we
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can compare the underlying graphs generated by L and Lc to uncover the structural

changes needed to mediate stabilization. Ultimately, we have created a Laplacian

matrix whose eigenvalues are all stable by construction.

We now take a closer look at this transformation, paying particular attention to

network structure. For the following observations, let G and Gc denote the graphs

of interest recovered from L and Lc respectively. We additionally order �-shifts such

that �1, �2, . . . , �N correspond to the ranked eigenvalues, ⇤1 < ⇤2 < . . . < ⇤N = 0

Corollary 4.1.1. For undirected G, (i.e. L,Lc are both symmetric), the transforma-

tion L ! Lc is equivalent to re-weighting each possible edge of G.

We can write the re-weighting exactly by taking a closer look at o↵-diagonal entries

of Lc.

(Lc)ij =
nX

k=1

(�(k))i(�
(k))j(⇤k + �k)

=
nX

k=1

(�(k))i(�
(k))j(⇤k) +

nX

k=1

(�(k))i(�
(k))j(�k)

= Lij +
nX

k=1

(�(k))i(�
(k))j(�k)

| {z }
:=⌘(i,j)

Here we see the transformation as an additive re-weighting by ⌘(i, j). With no further

assumptions on G, we make no further claims on the sign or bounds of ⌘(i, j). Thus,

Lc represents a weighted, undirected graph that allows for negative weights.3 As a

final note, this re-weighting operates on edges and non-edges alike.

Corollary 4.1.2. ⌘(i, j) is strongly influenced by eigenvectors with high IPR.

If any �
(l) is highly localized around some subset of nodes, then �l’s contribu-

tion to ⌘(i, j) will be heavily weighted if i,j are included in the subset and hardly

weighted otherwise. Accordingly, if all eigenvectors are highly localized, then ⌘(i, j)

is essentially controlled by only the eigenvectors wherein i, j are in the localization

subset.

3
Though not universally appropriate for modeling real-world phenomena, negative-weights are

salient in a number of network science applications, including financial and transportation networks

among others.
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Chapter 5

Targeted Destabilization

In chapter 4, we reviewed a topological control mechanism that, when implemented,

prevents pattern formation on an undirected graph by re-weighting its edges, with no

sign-restriction on weights. Can we instead develop a control mechanism where, rather

than re-weighting, we add/delete/re-wire unweighted edges to induce instability on

targeted modes?

Figure 5.1: Initial Setup — Continuous and discrete dispersion relation

Suppose we have an undirected, unweighted graphG and S 2 Sp whose continuous

dispersion relation crosses the instability threshold at two points, ⇤c1 and ⇤c2 , with

⇤c1 < ⇤c2 . The Laplacian spectrum of G is ordered1 ⇤0 < ⇤1 < . . . < ⇤N�1 = 0.

Suppose further the Laplacian spectrum lies entirely in the stable region and pattern

formation does not occur. In other words, �⇤↵ < ⇤c1 or � ⇤↵ > ⇤c2 for all ↵ =

0, 1, . . . , N � 1.

1
We change index from 0 to N � 1 for ease of notation in future circulant matrix calculations.
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If we imagine the continuous dispersion relation as a string, and the discrete

eigenvalue dispersions as beads on that string, we seek to select just one bead and

slide it along the string into the unstable region, while 1) recovering an undirected,

unweighted graph from the altered Laplacian spectrum and 2) keeping the other

beads (eigenvalues) as close to their original value as possible. This setup is shown

in Figure 5.1.

5.1 Weight-Collapse

We use the control mechanism outlined in Chapter 4 as a starting point. When

seeking to destabilize just one mode, we alter the first step of the procedure slightly.

1. (New) After identifying a target mode ⌧ , choose a �⌧ such that ⇤⌧ + �⌧ lies in

the instability region, while �l = 0 otherwise.

Subsequent steps to generate Lc remain the same. With only one non-zero �-shift,

we achieve a simpler form for ⌘(i, j), which we now index by ⌧ .

(Lc)ij = Lij + ⌘
(⌧)(i, j)

⌘
(⌧)(i, j) = (�(⌧))i(�

(⌧))j(�⌧ )

We desire a Laplacian Lf such that (Lf )ij = {0,�1} for i 6= j, and (Lf )ii =
P

j 6=i(Lf )ij.

To achieve this, we propose a simple step function, W : R ! R, that collapses values
of ⌘(⌧)(i, j) depending on some threshold parameter ✓ 2 (0, 1).

W(x) =

(
�1 if x  �✓

0 if x > �✓

After applying this function to o↵-diagonal entries of Lc, we re-define diagonal entries

by calculating row sums of the altered matrix, adding steps (5) and (6) to the control

mechanism procedure to form our new matrix Lf , whose eigenvalues are denoted ⇤(f)
↵ .

5. Form o↵-diagonal entries of Lf , where (Lf )ij = W((Lc)ij)

6. Form diagonal entries of Lf , where (Lf )ii =
P

j 6=i(Lf )ij

Steps (5) and (6) successfully form Lf such that its underlying graph is undirected

and unweighted. The transformation L ! Lf can thus be conceptualized as adding,

deleting, or re-wiring edges of L if intermediate re-weightings (captured by Lc) cross

a certain threshold ✓. Though we have the desired form for Lf , given the intractable

nature of analytically deriving the eigenvalues of Lf , there is no clear guarantee

that we achieve the desired Laplacian spectrum. We thus turn towards numerical

simulations to empirically evaluate the success of this weight-collapse approach.
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5.2 Numerical Simulations

5.2.1 Set-up

Our simulation recipe involves four components: a graph, system parameters, proce-

dural variables, and evaluation criteria.

Graph Choice: We are interested in connected graphs with unweighted, undi-

rected edges. Initial simulations were conducted on ER, WS, and BA graphs, as well

as ring lattices2. The ring lattice as a graph structure of choice was intentional, as we

can exploit its structure to compare theoretical expectations against empirical results.

We therefore give special attention to and conduct additional simulations on the ring

lattice.

System Parameters: A number of popular models are used to define the lo-

cal (reaction) dynamics of species, including but not limited to the Mimura-Murray,

Ginzburg-Landau, FitzHugh–Nagumo, and Brusselator models [27, 47, 32, 1]. With-

out loss of generality, we use the Brusselator model defined below on parameters

↵ = 2 and � = 4:

f(ui, vi) = ↵� (� + 1)ui + u
2
i vi

g(ui, vi) = �ui � u
2
i vi

(u?
, v

?) = (↵,
�

↵
)

As desired, gv < 0 < fu for our choice of ↵ and �.

We initialize (Du, Dv) such that Re(�↵)max = 0 for an arbitrary starting value of

Du (here we start with Du = 0.01). Defining � as before, our goal in doing this is

to initialize � = �c. We calculate � > �c such that ⇤c2 � ⇤c1 = |⇤0|. This creates a

Laplacian eigenvalue instability region with width equal to the spectral radius of L.

We then choose Du such that ⇤c1 > �⇤↵ for all ↵, re-calculating Dv = �Du. More

precisely, we choose Du such that ⇤c1 = �⇤0+1, so the leading eigenvalue is just shy

of the Turing instability threshold, with instability region from �⇤0+1 to �2⇤0+1.

We now have a pattern-enabled system S 2 Sp.

Procedural Variables: We start by setting the weight-collapse threshold ✓ = 0.5.

We choose �-shifts such that �(⇤⌧ +�⌧ ) =
1
2(⇤c1 +⇤c2), placing the now unstable tar-

get mode in the middle of the instability region before conducting the transformation

Lc ! Lf .

2
The ring lattice can be seen as a special case of a WS graph in which the re-wiring probability

is 0.
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Evaluation Criteria: To evaluate the success of the proposed control mecha-

nism, we consider both a binary criterion (whether only the target mode has been

destabilized) and two empirical measures (how far non-target eigenvalues deviate

from their initial values and how many edge-changes are needed to go from L to Lf ).

We define the first empirical measure as the average percentage change of non-target

eigenvalues, denoted by h⇢i. The second, denoted ", is defined as the number of

nonzero elements of A � Af , where A and Af represent the adjacency matrices re-

covered from L and Lf respectively. We seek to understand the conditions for which

any choice of ⌧ satisfies the binary criterion, as well as those for which our empirical

measures are minimized.

5.2.2 Results

For the binary success criterion, while L ! Lf does not universally succeed in desta-

bilizing some target mode ⌧ , we do have high degrees of success across the domain

of ⌧ for certain graphs (see Table 5.1). In failure cases, we observe that we either

fail to destabilize (�⇤(f)
⌧ < ⇤c1), or some additional mode s is destabilized such that

⇤c1 < �⇤(f)
s < �⇤(f)

⌧ < ⇤c2 . While we did not observe the case for which ⌧ remained

stable by overshooting the instability region (i.e. �⇤(f)
⌧ > ⇤c2), we conjecture that

it could be possible, potentially by choosing a set of pattern-enabled system param-

eters with an arbitrarily narrow instability region as well as a large �⌧ . As a final

general observation, the binary criterion was more frequently satisfied for ⇤⌧ close to

the instability threshold, consistent with the intuitive expectation that it is harder to

de-stabilize modes further in the stability region.

Comparing results across graph types with equal average degree, we observe the

success rate for the binary criterion is highest for WS graphs with low rewiring prob-

ability (p = 0.1, 0.2). ER graphs stand out as those with high variability for success

relative to other graph models. BA graphs are exceptionally resilient against this

control mechanism, with an average success rate of just 0.16%. Though a large num-

ber of edge-changes do occur across all ⌧ values, our control mechanism hardly alters

the original Laplacian spectrum of BA graphs, with a general trend indicating an

increase in ⇢ as ⌧ increases. See Appendix A for further details and sample results

for each graph generation model.

As stated in Corollary 4.1.2, we remember that graphs with eigenvectors that

demonstrate a high degree of localization can strongly influence the intermediate

weighting as we transform from L ! Lf . As shown in [18] and supplemented by

our simulated IPR calculations (see Appendix A), BA graphs display a substantially
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Graph Mean Standard Deviation

Ring Lattice 92.93 0
BA 0.16 0.40
ER 82.01 9.08

WS (p = 0.1) 97.52 1.68
WS (p = 0.2) 93.47 3.07
WS (p = 0.3) 91.55 3.23
WS (p = 0.4) 91.11 4.76
WS (p = 0.5) 91.55 3.69
WS (p = 0.6) 90.78 4.75
WS (p = 0.7) 89.73 5.18
WS (p = 0.8) 90.30 4.95
WS (p = 0.9) 90.77 3.64

Table 5.1: Binary Success Results — Percentage of target eigenvalues fulfilling
the binary criterion for various generation models for N = 100, hki = 50.

Expressed as a mean and standard deviation over 100 simulations.

stronger degree of localization than other tested models. The stark contrast in success

and resilience to our control mechanism for BA graphs may be explained in part by

this localization, though further experimentation is needed to rigorously evaluate this

hypothesis.

We now pay special attention to the case of the ring lattice. Looking at our

empirical measures, as shown in Figures 5.3 and 5.2, we observe the number of edge

changes generally increases as �⌧ increases, but with patches of deviation that depend

on hki. While the dependence on hki and the nature of deviation patches is unclear,

the data otherwise appears to follow the shape of a logit function. The trend for the

average percentage change does not demonstrate any statistically significant linear

correlations as evaluated by Pearson’s correlation coe�cient, indicating ⌧ may have

less impact on this metric for the ring lattice.
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(a) hki = 40 (b) hki = 50 (c) hki = 60

Figure 5.2: " vs. Target Index — Results for ring lattice, N = 100

(a) hki = 40 (b) hki = 50 (c) hki = 60

Figure 5.3: h⇢i vs. Target Index — Results for ring lattice, N = 100

Repeating simulations on variable numbers of nodes, we observe there appears to

be a critical number of nodes above which L ! Lf does not result in any structural

changes (i.e. Lf = L). Moreover, we found that small ✓ corresponded to a higher

number of non-edges being converted to edges, while large ✓ corresponded to higher

number of edges being deleted. Though the number of edge changes generally appears

to scale with ⌧ , the net change in total degree does not, suggesting the structural

changes occurring can largely be conceptualized as re-wiring. Additionally, the edge-

changes demonstrate a high degree of symmetricity. Sample results are shown in

Figure 5.4, where �|E| denotes the change in edge count between G and Gf .

5.3 Theoretical Bounds

In light of numerical results, we develop theoretical expectations for L ! Lf when G

is a ring lattice.
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(a)

⌧ = 0

�|E| +21

(b)

⌧ = 2

�|E| +23

(c)

⌧ = 50

�|E| +17

Figure 5.4: Symmetric Re-wiring — Visualizations of Gf for variable ⌧ when G

is a ring lattice and N = 100, hki = 50. Additional examples in Appendix B.

Theorem 5.3.1. For G a ring lattice and a target mode ⌧ ,
��⌘(⌧)(i, j)

��  2
N |�⌧ |

Proof.

Lring =

0

BBBBBBBB@

c0 c1 c2 . . . . . . cn�1

cn�1 c0 c1 c2 . . . cn�2
... cn�1 c0 c1

. . .
...

. . . . . . . . .
...
c1

c1 . . . . . .
. . . cn�1 c0

1

CCCCCCCCA

Observe that the Laplacian for a ring lattice is a circulant matrix. We therefore know

its spectrum3 and eigenvectors in terms of the first row of Lring.

⇤↵ =
N�1X

k=0

cke
2⇡ı↵
N k

�
(↵)
j =

1p
N
(e

2⇡ı↵
N j)

From this complex eigenbasis, we can derive a real eigenbasis. Namely, for all ↵, we

seek to generate a new eigenvector !(↵) 2 RN from �
(↵) 2 CN . Observe that for some

complex eigenvector ⌫, at least one of the following statements is true:

1. ⌫ + ⌫̄ = 2Re(⌫) is an eigenvector

2. ı(⌫ � ⌫̄) = �2Im(⌫) is an eigenvector

3
The spectrum can also be seen as a discrete Fourier transform (DFT) of the first row.
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Statements (1) and (2) are respectively false when Re(⌫) and Im(⌫) are the 0 vector.

When both are false, ⌫ must be the 0 vector, which leads to a contradiction, as the

0 vector is not an eigenvector. Therefore, at least one of (1) and (2) is true.

In our case, Re(�(↵)
j ) = 1p

N

⇥
cos(2⇡↵N j)

⇤
and Im(�(↵)

j ) = 1p
N

⇥
sin(2⇡↵N j)

⇤
. We first

ask what happens if we use statement (1) to form real eigenvectors from the real

component of �(↵). Cosine is an even function, so when ↵ + � = N , !(↵) = !
(�).

Statement (1) therefore only helps us generate a set of N
2 +1 unique real eigenvectors

for even N and N+1
2 for odd N . Statement (2), on the other hand, avoids this

symmetry issue, but produces the 0 vector for ↵ = 0, and, for even N , ↵ = N
2 . For

these cases4 we can leverage statement (1) to produce unique nonzero eigenvectors.

After normalizing, we achieve the final set

!
(↵)
j =

8
>><

>>:

�2p
2N

sin(
2⇡↵

N
j) if ↵ /2 {0, N

2
}

1p
N

cos(
2⇡↵

N
j) if ↵ 2 {0, N

2
}

for ↵ = 0, 1, . . . , N � 1

We can now plug into ⌘
(⌧)(i, j) and consider its maximum.

Case 1: ⌧ /2 {0, N2 }

max
��⌘(⌧)(i, j)

�� = max

����
2

N
sin (

2⇡⌧

N
i) sin (

2⇡⌧

N
j)

���� |�⌧ |

= max

����
1

N
[ cos (

2⇡⌧

N
(i� j))� cos (

2⇡⌧

N
(i+ j))]

���� |�⌧ |

 2

N
|�⌧ |

Case 2: ⌧ 2 {0, N2 }

max
��⌘(⌧)(i, j)

�� = max

����
1

N
cos (

2⇡⌧

N
i) cos (

2⇡⌧

N
j)

���� |�⌧ |

= max

����
1

2N
[ cos (

2⇡⌧

N
(i� j)) + cos (

2⇡⌧

N
(i+ j))]

���� |�⌧ |

 1

N
|�⌧ |

We have thus proved an upper bound:
��⌘(⌧)(i, j)

��  2
N |�⌧ |.

4
Noting that

N
2 is not in the domain of ↵ for odd N , we henceforth collectively treat the 0-vector

cases as the cases in which ↵ 2 {0, N
2 } without loss of generality
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Theorem 5.3.1 is consistent with empirical results as well. Having identified an

upper bound on
��⌘(⌧)(i, j)

��, we can further contextualize scenarios in which Lf = L.

For a chosen ⌧ , let e⌘(⌧) denote the actual maximum achieved by
��⌘(⌧)(i, j)

�� over all
(i, j) pairs (as opposed to just an upper bound). If

e⌘(⌧) < ✓ =) (Lf )ij = Lij, 8Lij = 0

e⌘(⌧) < 1� ✓ =) (Lf )ij = Lij, 8Lij = �1

We have identified separate conditions for which all non-edges remain non-edges

and all edges remain edges. When both conditions are satisfied, the weight-collapse

function essentially restores Lc to L, resulting in Lf = L. This logic similarly supports

results indicating that decreasing ✓ lowered the threshold for edge addition, while

increasing ✓ lowered the threshold for edge deletion.

Corollary 5.3.1. For G a ring lattice, if limN!1
|�⌧ |
N = 0, then there exists some

critical number of nodes, Nc, above which L ! Lf results in L = Lf for a given target

and constant hki.

The conditional statement is necessary because our choice of N impacts the upper

bound of e⌘(⌧) in two ways. We see directly an upper bound dependence on N
�1, but

there is an additional dependence of |�⌧ | on N . Our problem set-up requires us to

choose �-shifts that push eigenvalues into the instability region, which we calculate

using the gap between the lower threshold (as determined by ⇤0) and ⇤⌧ . Since the

spectrum of L depends on N (and hki), and �⌧ depends on the spectrum, �⌧ depends

on N . If N grows faster than |�⌧ | for increasing N , the maximum possible value

of e⌘(⌧) (identified in Theorem 5.3.1) is driven smaller and smaller, until eventually

e⌘(⌧) < ✓ and e⌘(⌧) < 1 � ✓ are both necessarily true; no edge-changes occur in this

transformation. More precisely, we define

Nc = inf{N : e⌘(⌧) < min{✓, 1� ✓}}

Proposition 5.3.1. For G a ring lattice, limN!1
|�⌧ |
N = 0 is always true for constant

hki.

Proof. We prove Proposition 5.3.1 by directly considering limN!1
|�⌧ |
N . We note that

the maximum �-shift will always be �F given our problem set-up, where �F corresponds

to the Fiedler eigenvalue ⇤F . Since shifts are ordered, to prove the limit for all ⌧ , it is

su�cient to prove limN!1
|�⌧ |
N = 0 holds for �F . We now consider an upper bound on

|�F | in terms ofN and hki. Our scheme dictates �⌧ such that�(⇤⌧+�⌧ ) =
1
2(⇤c1+⇤c2),
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which we can re-write in terms of the leading eigenvector: �(⇤⌧ + �⌧ ) =
1
2(�3⇤0+2).

Therefore

|�F | =
3

2
|⇤0|� |⇤F |+ 1

We can put an upper bound on |�F | by using a bound from above for |⇤0| and a bound

from below for |⇤F |. Namely, via the Perron-Frobenius theorem, |⇤0|  kmax = hki.
From [28], we have 4(ND)�1  |⇤F |, where D is the diameter of the network. For

the ring lattice, we minimize the lower bound on |⇤F | with a maximum possible D of
N
2 , implying 8N�2  |⇤F |. We now have an upper bound on |�F |.

|�F | 
3

2
hki � 8N�2 + 1

It will be su�cient to assume the equality case for maximal |�F |, which we plug into

our limit of interest.

lim
N!1

|�F |
N

= lim
N!1

(
3hki
2N

� 8

N3
+

1

N
)

For constant hki, this limit evaluates to 0. We have thus proved limN!1
|�F |
N = 0,

which is su�cient to prove limN!1
|�⌧ |
N = 0.

Because limN!1
|�⌧ |
N = 0 is true for the ring lattice, we can assume the existence

of Nc. This theoretical result is consistent with the critical number of nodes observed

in the numerical simulations, above which Lf = L.

Corollary 5.3.2. N must be even for e⌘(⌧) = 2
N |�⌧ |

The frequency with which
��⌘(⌧)(i, j)

�� reaches its maximum value e⌘(⌧) over all (i, j)
pairs depends on N, ⌧ . When e⌘(⌧) is 2

N |�⌧ |, we require ⌧ /2 {0, N2 } and one of two

possible scenarios:

Case 1: cos (2⇡⌧N (i� j))� cos (2⇡⌧N (i+ j)) = 2

The argument of the first cosine term must be an integer multiple of 2⇡, while the

argument of the second is an integer multiple of 2⇡ shifted by ⇡.

2⇡⌧

N
(i� j) = 2⇡1

2⇡⌧

N
(i+ j) = ⇡ + 2⇡2

1,2 2 Z+
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We therefore have ⌧(i� j) = N1 and ⌧(i+ j) = N
2 +N2.

Case 2: cos (2⇡⌧N (i� j))� cos (2⇡⌧N (i+ j)) = �2

The argument of the second cosine term must be an integer multiple of 2⇡, while

the argument of the first is an integer multiple of 2⇡ shifted by ⇡.

2⇡⌧

N
(i� j) = ⇡ + 2⇡1

2⇡⌧

N
(i+ j) = 2⇡2

1,2 2 Z+

We therefore have ⌧(i� j) = N
2 +N1 and ⌧(i+ j) = N2.

As ⌧, i, j are all integers, ⌧(i ± j) is an integer as well, so we need N
2 to be an

integer. Both cases therefore require even N for e⌘(⌧) to reach its upper bound.

Proposition 5.3.2. Assume there exists some set of N , denoted N
?, for which

⌧ 2 {0, N2 } guarantees L = Lf , while ⌧ /2 {0, N2 } does not. For the special case

of ✓ = 1� ✓ = 0.5, N? = ; i↵ |⇤F |  |⇤0|
2 � 1.

As a final note, we propose results following from the di↵ering upper bounds

of
��⌘(⌧)(i, j)

�� for ⌧ 2 {0, N2 } and ⌧ /2 {0, N2 }. We prove Proposition 5.3.2 by first

assuming N
? is nonempty and attempt to construct its elements.

Here we define N
?:

N⌧ = {N : 2 |�⌧ | < N < 4 |�⌧ |}

N
? =

\

⌧

N⌧

N⌧ is directly obtained by requiring 1) 1
N |�⌧ | < 1

2 and 2) 2
N |�⌧ | > 1

2 . Condition 1)

restricts N to the set of values that guarantees max
��⌘(⌧)(i, j)

�� < min{✓, 1 � ✓} for

⌧ 2 {0, N2 }. Condition 2) imposes the restriction that each element of N? is less than

Nc; otherwise, we would allow values of N for which L = Lf for all ⌧ . We therefore

define a set indexed by ⌧ which includes values of N for which 1) and 2) hold for a

given ⌧ , then define N
? as the intersection of these sets. Because our � shifts are

ordered, we can bypass this two-step process by directly considering the maximum

and minimum possible values of 2 |�⌧ | and 4 |�⌧ | respectively.

N
? = {N : 2max

⌧
|�⌧ | < N < 4min

⌧
|�⌧ |}
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We can re-write the set condition statement as follows.

2max
⌧

|�⌧ | < N < 4min
⌧

|�⌧ |

2 |�F | < N < 4 |�0|

Plugging in from our procedure, we get

3 |⇤0|+ 2� 2 |⇤F | < N < 2 |⇤0|+ 4 (5.1)

We now directly compare the least and greatest terms of the inequality above.

3 |⇤0|+ 2� 2 |⇤F | < 2 |⇤0|+ 4

|⇤F | >
|⇤0|
2

� 1

When |⇤F |  |⇤0|
2 � 1, it is impossible for some N to exist where Inequality 5.1 is

true. As there is no such N that fits the criteria, N? = ;. This condition describes

the gap between the leading and Fiedler eigenvalues and is generally easy to fulfill on

random networks, as breaking it requires a very small number of nodes alongside a

low average degree. In our numerical simulations, the condition |⇤F |  |⇤0|
2 � 1 was

always fulfilled, and we accordingly observed N
? = ;.
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Chapter 6

Conclusion

In addition to rigorously developing fundamentals of network Turing patterns, our

work analyzes a new topological control mechanism for targeted mode destabiliza-

tion, building a deeper theoretical understanding of structurally mediated Turing

patterns. There are a number of related research questions spawning from these

results. For instance, existing topological control studies typically “draw their con-

clusions by comparing two di↵erent static network topologies” [40]. Such is the case

in our work, as we treat the control intervention as a discrete shift from one static

architecture (L) to another (Lf ). Applying this work to temporal networks, whose

topologies can change over continuous time, could prove to be a promising research

space. Furthermore, given the stark di↵erence in success for networks with varying

degrees of Laplacian eigenvector localization, future studies might seek to understand

the relationship between degree heterogeneity, localization, and pattern emergence.

Though we pay special attention to the ring lattice, there are further unexplored

directions for this graph type, such as quantifying pattern invariance when destabi-

lizing di↵erent targets. Lastly, attempting to prove boundedness results similar to

Theorem 5.3.1 on random graphs could prove a fruitful endeavor as well. Ultimately,

this work seeks to enhance our theoretical understanding of pattern formation in light

of the omnipresent and salient real-world examples of reaction-di↵usion systems on

networks.

32



Appendix

A: Supplementary Results from Numerical Simulations

(a) " vs. Target Index —
Results for N = 100, hki = 50

(b) h⇢i vs. Target Index —
Results for N = 100, hki = 50

Figure 1: BA Model averaged over 100 runs

(a) " vs. Target Index —
Results for N = 100, hki = 50

(b) h⇢i vs. Target Index —
Results for N = 100, hki = 50

Figure 2: ER Model averaged over 100 runs
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(a) " vs. Target Index —
Results for N = 100, hki = 50

(b) h⇢i vs. Target Index —
Results for N = 100, hki = 50

Figure 3: WS Model averaged over 100 runs, p = 0.1

(a) " vs. Target Index —
Results for N = 100, hki = 50

(b) h⇢i vs. Target Index —
Results for N = 100, hki = 50

Figure 4: WS Model averaged over 100 runs, p = 0.5
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(a) " vs. Target Index —
Results for N = 100, hki = 50

(b) h⇢i vs. Target Index —
Results for N = 100, hki = 50

Figure 5: WS Model averaged over 100 runs, p = 0.9

Graph Mean

Ring Lattice 0.054
BA 0.417
ER 0.049

WS (p = 0.1) 0.059
WS (p = 0.5) 0.041
WS (p = 0.9) 0.046

Table 1: IPR Scores — Average localization score across all eigenvectors for
various models when N = 100, hki = 50.

Expressed as a mean over 100 simulations.
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B: Symmetric Re-wiring

(a) ⇤⌧ = ⇤0 (b) ⇤⌧ = ⇤2

(c) ⇤⌧ = ⇤49 (d) ⇤⌧ = ⇤98

Figure 6: Gf — Visualization of Gf for changing ⌧ when G is a ring lattice on
N = 100, hki = 50.
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C: Emergence of Patterns in Network Reaction-Di↵usion Sys-

tem

(a) No pattern formation in stable system

(b) Pattern formation in unstable system

Figure 7: Propagation Results — Concentration of di↵usive species by node after
perturbing the initial uniform distribution of the activator-inhibitor system
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[32] B. Peña and C. Pérez-Garćıa. Stability of Turing patterns in the Brusselator

model. Physical Review E, 64(5):056213, October 2001. Publisher: American

Physical Society. URL: https://link.aps.org/doi/10.1103/PhysRevE.64.

056213, doi:10.1103/PhysRevE.64.056213.

[33] Julien Petit, Ben Lauwens, Duccio Fanelli, and Timoteo Carletti. The-

ory of Turing Patterns on Time Varying Networks. Physical Review Let-

ters, 119(14):148301, October 2017. Publisher: American Physical Society.

URL: https://link.aps.org/doi/10.1103/PhysRevLett.119.148301, doi:

10.1103/PhysRevLett.119.148301.

[34] Erik M Rauch and Mark M Millonas. The role of trans-membrane signal trans-

duction in turing-type cellular pattern formation. Journal of Theoretical Bi-

ology, 226(4):401–407, February 2004. URL: https://www.sciencedirect.

com/science/article/pii/S0022519303003588, doi:10.1016/j.jtbi.2003.

09.018.

[35] J. Ritchie. Turing instability and pattern formation on directed networks. Com-

munications in nonlinear science & numerical simulation, 116:106892–, 2023.

Publisher: Elsevier B.V. doi:10.1016/j.cnsns.2022.106892.

[36] L. Shen and R. Van Gorder. Predator-prey-subsidy population dynam-

ics on stepping-stone domains. Journal of Theoretical Biology, 420,

2017. Publisher: Elsevier. URL: https://ora.ox.ac.uk/objects/uuid:

2e725170-8427-43b4-a589-7400ac7868fa.

42

https://www.sciencedirect.com/science/article/pii/S0096300322000960
https://www.sciencedirect.com/science/article/pii/S0096300322000960
https://doi.org/10.1016/j.amc.2022.127010
https://www.nature.com/articles/nphys1651
https://doi.org/10.1038/nphys1651
https://link.aps.org/doi/10.1103/PhysRevLett.86.3200
https://link.aps.org/doi/10.1103/PhysRevLett.86.3200
https://doi.org/10.1103/PhysRevLett.86.3200
https://link.aps.org/doi/10.1103/PhysRevE.64.056213
https://link.aps.org/doi/10.1103/PhysRevE.64.056213
https://doi.org/10.1103/PhysRevE.64.056213
https://link.aps.org/doi/10.1103/PhysRevLett.119.148301
https://doi.org/10.1103/PhysRevLett.119.148301
https://doi.org/10.1103/PhysRevLett.119.148301
https://www.sciencedirect.com/science/article/pii/S0022519303003588
https://www.sciencedirect.com/science/article/pii/S0022519303003588
https://doi.org/10.1016/j.jtbi.2003.09.018
https://doi.org/10.1016/j.jtbi.2003.09.018
https://doi.org/10.1016/j.cnsns.2022.106892
https://ora.ox.ac.uk/objects/uuid:2e725170-8427-43b4-a589-7400ac7868fa
https://ora.ox.ac.uk/objects/uuid:2e725170-8427-43b4-a589-7400ac7868fa


[37] Mingrui Song, Shupeng Gao, Chen Liu, Yue Bai, Lei Zhang, Beilong Xie, and

Lili Chang. Cross-di↵usion induced Turing patterns on multiplex networks of a

predator–prey model. Chaos, solitons and fractals, 168:113131–, 2023. Publisher:

Elsevier Ltd. doi:10.1016/j.chaos.2023.113131.

[38] Taro Takaguchi and Renaud Lambiotte. Su�cient conditions of endemic thresh-

old on metapopulation networks. Journal of Theoretical Biology, 380:134–143,

September 2015. arXiv:1410.5116 [cond-mat, physics:physics, q-bio]. URL:

http://arxiv.org/abs/1410.5116, doi:10.1016/j.jtbi.2015.05.024.

[39] A. M. Turing. The chemical basis of morphogenesis. Bulletin of Mathematical

Biology, 52(1):153–197, January 1990. doi:10.1007/BF02459572.

[40] Robert A. Van Gorder. A theory of pattern formation for reaction–di↵usion

systems on temporal networks. Proceedings of the Royal Society A: Mathemat-

ical, Physical and Engineering Sciences, 477(2247):rspa.2020.0753, 20200753,

March 2021. URL: https://royalsocietypublishing.org/doi/10.1098/

rspa.2020.0753, doi:10.1098/rspa.2020.0753.

[41] Vladimir K. Vanag and Irving R. Epstein. Segmented spiral waves in a

reaction-di↵usion system. Proceedings of the National Academy of Sciences,

100(25):14635–14638, December 2003. Publisher: Proceedings of the National

Academy of Sciences. URL: https://www.pnas.org/doi/full/10.1073/pnas.

2534816100, doi:10.1073/pnas.2534816100.

[42] Weiming Wang, Xiaoyan Gao, Yongli Cai, Hongbo Shi, and Shengmao Fu. Tur-

ing patterns in a di↵usive epidemic model with saturated infection force. Jour-

nal of the Franklin Institute, 355(15):7226–7245, October 2018. URL: https:

//www.sciencedirect.com/science/article/pii/S0016003218304915, doi:

10.1016/j.jfranklin.2018.07.014.

[43] Qi Xuan, Fang Du, Hui Dong, Li Yu, and Guanrong Chen. Structural control of

reaction-di↵usion networks. Physical Review E, 84(3):036101, September 2011.

Publisher: American Physical Society. URL: https://link.aps.org/doi/10.

1103/PhysRevE.84.036101, doi:10.1103/PhysRevE.84.036101.

[44] Nazanin Zaker, Christina A. Cobbold, and Frithjof Lutscher. The e↵ect of land-

scape fragmentation on Turing-pattern formation. Mathematical Biosciences and

Engineering, 19(3):2506–2537, January 2022. Number: 3 Publisher: AIMS Press.

URL: https://eprints.gla.ac.uk/261281/, doi:10.3934/mbe.2022116.

43

https://doi.org/10.1016/j.chaos.2023.113131
http://arxiv.org/abs/1410.5116
https://doi.org/10.1016/j.jtbi.2015.05.024
https://doi.org/10.1007/BF02459572
https://royalsocietypublishing.org/doi/10.1098/rspa.2020.0753
https://royalsocietypublishing.org/doi/10.1098/rspa.2020.0753
https://doi.org/10.1098/rspa.2020.0753
https://www.pnas.org/doi/full/10.1073/pnas.2534816100
https://www.pnas.org/doi/full/10.1073/pnas.2534816100
https://doi.org/10.1073/pnas.2534816100
https://www.sciencedirect.com/science/article/pii/S0016003218304915
https://www.sciencedirect.com/science/article/pii/S0016003218304915
https://doi.org/10.1016/j.jfranklin.2018.07.014
https://doi.org/10.1016/j.jfranklin.2018.07.014
https://link.aps.org/doi/10.1103/PhysRevE.84.036101
https://link.aps.org/doi/10.1103/PhysRevE.84.036101
https://doi.org/10.1103/PhysRevE.84.036101
https://eprints.gla.ac.uk/261281/
https://doi.org/10.3934/mbe.2022116


[45] Hao Zhang, Yin Sheng, and Zhigang Zeng. Synchronization of Coupled Reaction–

Di↵usion Neural Networks With Directed Topology via an Adaptive Approach.

IEEE Transactions on Neural Networks and Learning Systems, 29(5):1550–1561,

May 2018. URL: https://ieeexplore.ieee.org/document/7879312/, doi:

10.1109/TNNLS.2017.2672781.

[46] M. Mocarlo Zheng, Bin Shao, and Qi Ouyang. Identifying network topologies

that can generate turing pattern. Journal of Theoretical Biology, 408:88–96,

November 2016. URL: https://www.sciencedirect.com/science/article/

pii/S0022519316302405, doi:10.1016/j.jtbi.2016.08.005.

[47] Qianqian Zheng and Jianwei Shen. Pattern formation in the FitzHugh–Nagumo

model. Computers & Mathematics with Applications, 70(5):1082–1097, Septem-

ber 2015. URL: https://www.sciencedirect.com/science/article/pii/

S089812211500317X, doi:10.1016/j.camwa.2015.06.031.

[48] Shijie Zhou, Yao Guo, Maoxing Liu, Ying-Cheng Lai, and Wei Lin. Ran-

dom temporal connections promote network synchronization. Physical review.

E, 100(3):032302–032302, 2019. Publisher: American Physical Society. doi:

10.1103/PhysRevE.100.032302.

44

https://ieeexplore.ieee.org/document/7879312/
https://doi.org/10.1109/TNNLS.2017.2672781
https://doi.org/10.1109/TNNLS.2017.2672781
https://www.sciencedirect.com/science/article/pii/S0022519316302405
https://www.sciencedirect.com/science/article/pii/S0022519316302405
https://doi.org/10.1016/j.jtbi.2016.08.005
https://www.sciencedirect.com/science/article/pii/S089812211500317X
https://www.sciencedirect.com/science/article/pii/S089812211500317X
https://doi.org/10.1016/j.camwa.2015.06.031
https://doi.org/10.1103/PhysRevE.100.032302
https://doi.org/10.1103/PhysRevE.100.032302

	Introduction
	Background
	Turing Patterns
	Reaction Diffusion Equations
	Structurally Mediated Patterns

	Overview of Discussion

	Formal Derivation of Stability Conditions
	Preliminary 1: Assumptions
	Preliminary 2: Dispersion Relation
	Preliminary 3: Stability Conditions

	Pattern-Enabled Systems
	Parameter Restrictions
	Reaction Function
	Diffusion Ratio

	Random Networks
	Models
	Pattern-Enabled Parameter Space

	Localization

	Structural Tuning
	Laplacian Interventions
	Stabilization via Re-weighting


	Targeted Destabilization
	Weight-Collapse
	Numerical Simulations
	Set-up
	Results

	Theoretical Bounds

	Conclusion
	Bibliography

