
Monotonous Monotonicity: Activation Functions in
Graph Attention Mechanisms

Abstract

Monotonic activation functions within graph attention mechanisms preserve rank-
ordering of static edge-based attention weights. Invoking definitions of expressivity
from Brody et al. [3], we explore the impact of non-monotonic activation functions
on static and dynamic graph attention mechanisms, achieving new benchmark
results on a graph classification task in the process. We empirically and theoretically
show that non-monotonic activation functions can generate dynamic attention
weights from underlyingly static mechanisms, while also introducing a novel
attention function: DYNAMAT.

1 Introduction

One of the first versions of edge-attention in graph neural networks (GNNs) was introduced by
Veličković et al. [15] through the GAT model. This approach to GNNs provided a computationally
efficient method for assigning variable weights to distinct nodes within the neighborhood of a query
node before applying subsequent aggregation or propagation layers. The expressivity of this attention
mechanism was directly improved with GATv2 [3] and combined with hop-based attention models
[4], [12] via AERO-GNN [8]. Despite the empirical successes of deep attention-based GNNs and
progress towards mitigating over-smoothing concerns [8], little research has been conducted to justify
the choice of activation functions implemented within attention scoring functions. In this paper, we
investigate the impact of specific nonlinearity choices in attention mechanisms, with a specific focus
on enhancing expressivity through non-monotonic nonlinearities.

Original Contributions

The following contributions are original to the best of our knowledge. We provide a contrastive
analysis of monotonic and non-monotonic activation functions in foundational graph attention models.
During this analysis, we produce new benchmark results on a binary graph classification task. Code
in this study uses baseline attentional layers for GAT and GATv2 from PyTorch Geometric [5],
with original code written for model variations to both alter attention function design and extract
learned weights. Lastly, we introduce a novel GAT variation that generates dynamic attention weights,
deemed DYNAMAT.

Related Work

A host of analyses exist on expressivity and generalization capabilities in deep GNNs [6], [16].
While most early work shows empirical benefits of attention models on inductive tasks, recent
work has questioned the generalizability of deep attention models [18] [6], citing over-smoothing,
over-squashing, and over-correlation. Some existing research covers initialization schema for general
attention mechanisms [13] and variance propagation for GNNs [9] separately, but there are significant
gaps regarding these techniques for graph attentional layers specifically. Lastly, though much research
is dedicated to the development of activation functions [10] [19], even comprehensive surveys of
graph neural networks dedicate little time to nonlinearity choices within GNN attentional layers [17].
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2 Preliminaries

2.1 Notation

Let G(N,E) denote a graph with N nodes and edge-set E. We denote the set of first-order neighbors
of node i as Ni.We use X(k)

i 2 RF to denote the feature representation of node i at layer k, where
each node has an initial representation X(0)

i , F is the number of node features, and X(k) 2 RN⇥F is
the matrix containing all X(k)

i . Standard notations for matrix operations are used, with the additional
specification that || represents concatenation.

2.2 Attention Mechanism

A single-head edge-attentional layer and subsequent propagation in the message-passing regime can
be summarized by the following equations:

e(i, j) = a(Xi, Xj) (1)
Aij = �a(eij) (2)

Z(k) = �z(AXW ) (3)

where a : RF ⇥ RF ! R is used to obtain the raw attention score e(i, j) for i attending to j, and
Aij denotes the attention weight after applying an activation function. The attention score is only
calculated for j 2 Ni and j = i; it is otherwise 0. For the conventional choice of �a = softmax, this
also acts as a normalizing function and bounds attention scores between 0 and 1.

2.3 Expressivity

Borrowing definitions from Brody et al. [3], the typology used in this paper distinguishes different
attention functions by their expressivity. Namely, a static attention function learns weights such that
the ranking of attention scores is unconditioned on the query node. Dynamic attention functions
compute attention coefficients that are sensitive to the query node. For attention functions that
can be either dynamic or static depending on prerequisite conditions, we introduce the label of
quasi-dynamic.

The design of attention function a is what distinguishes static, dynamic, and quasi-dynamic attention.
For GAT and GATv2, the difference primarily lies in the order of operations:

Static attention (GAT) : e(i, j) = �e(a
T · [WXi||WXj ])

Dynamic attention (GATv2) : e(i, j) = aT · �e(W [Xi||Xj ])

In this case, a is parameterized by the learnable weight matrix W and learnable weight vector a. For
quasi-dynamic attention, a more direct formulation of the dot product attention mechanism from
Vaswani et al. [14] for graphs serves as a prime example:

Quasi-dynamic attention (DPGAT) : e(i, j) = (XT
i Q)(XT

j K)T (dk)
�1/2

where dk is a scaling factor based on the dimensionality of the Q and K matrices. In this case,
DPGAT is quasi-dynamic because it will produce static attention weights for linearly dependent node
representations, while producing dynamic attention weights for the linearly independent case. Proofs
for the above expressivity classifications are found in Brody et al. [3].

2.4 Activation Function Monotonicity

There are at least two nonlinearities involved in an attentional layer: �a (typically used for nor-
malization), and �z . A third nonlinearity is involved if the design of a includes an additional
activation function, �e. In the original implementation of GAT and GATv2, �e = LeakyReLU and
�a = softmax, both of which are monotonic activation functions. The main theorem provided in
[3] that proves the limited expressivity of the static attention mechanism relies on the monotonicity
of the nonlinearity choices for �e and �a. While monotonic activation functions are well-suited
for gradient descent, loss landscape simplification, and smoothness/continuity, there is no strict
requirement that activation functions be monotonic. In fact, there is empirical evidence justifying the
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use of non-monotonic activation functions [7] [10] [19], with the underlying intuition being that the
non-monotonicity may mitigate vanishing gradient and over-smoothing problems.

In light of this, we 1) explore the impact of activation function selection on expressivity classification
and 2) design a novel dynamic attention mechanism.

3 Analysis

3.1 Expressivity Benefits from Non-monotonic Activation Functions

In the case of GAT, before applying the activation �e, the linearly weighted attention scores for i
attending to j have a rank order unconditional on i [3]. If a monotonic activation function is applied
(e.g. LeakyReLU), then this rank ordering is preserved. If a non-monotonic activation is applied,
then the rank ordering is not necessarily preserved and dynamic weights can be achieved.

Figure 1: Activation Functions: Non-monotonic (left) and monotonic (right)

Proof. Consider query node i and two pre-activated attention scores, ↵ij and ↵ik, with a non-
monotonic activation function �. Select � such that there is exactly one global minimum, with no
additional minima or maxima (see GELU, SiLU, or MISH in figure 1 as examples). Define ↵c such
that d�

d↵ = 0 at ↵c.

Case 1: ↵ij > ↵c and ↵ik > ↵c. For any ↵ > ↵c, � is monotonically increasing and
therefore preserves rank ordering.
Case 2: ↵ij < ↵c and ↵ik < ↵c. For any ↵ < ↵c, � is monotonically decreasing and therefore
inverts rank ordering.
Case 3: ↵ij < ↵c and ↵ik > ↵c. If two ranked inputs fall on opposite sides of ↵c, then the rank
ordering will (definitionally) be preserved iff �(↵ik) > �(↵ij). Stronger claims can be made for
more specific choices of activation function. For instance, if � = GELU, then rank ordering will be
preserved if ↵ik > 0, and may or may not be preserved for ↵c < ↵ik < 0.

If conditions for Case 2 or 3 are met, a non-monotonic activation in the attention scoring
function thus has the potential to induce dynamic attention weights.

Following from this proof, conditions for Case 2 or 3 for pre-activated GAT attention scores can be
met if it is possible for aT · [WXi||WXj ] < ↵c. Full proofs governing how best to design the node
representations and linear weight initializations to meet these conditions is left as an open question.

3.2 DYNAMAT

We also design and evaluate a new (to the best of our knowledge) dynamic attention mechanism
alongside standard versions of GAT and GATv2: DYNAmic point-wise Multiplication GAT (DYNA-
MAT).

DYNAMAT : e(i, j) = aT · �e(W (Xi �Xj))
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for �e = GELU and point-wise multiplication �. Its dynamism can be proven via the same proof
for GATv2 found in Brody et al. [3]. Inspired by DPGAT and GATv2, this scoring design seeks to
combine the elements of both by directly multiplying corresponding elements of node representations
(rather than concatenating), introducing nonlinearity, and finally re-scaling linearly.

4 Experimental Setup

Models were evaluated on graph classification tasks. Base models include vanilla GAT [15] and
vanilla GATv2 [3]. Model variations are distinguished by the choice of �e, with the following variants:
GELU, SiLU, MISH, and no activation function (equivalently, �e(x) = x). Results are shown in
table 1 alongside results for DYNAMAT.

4.1 Datasets

Binary classification datasets include AIDS [11], Mutagenicity [11], and PROTEINS [2]. The
ENZYMES [2] dataset is for six-way classification of enzymes. For AIDS and Mutagenicity,
nodes represent atoms and edges represent covalent bonds between atoms; each graph represents
a molecular compound. Graphs in the AIDS dataset are active/inactive against HIV, while graphs
in the Mutagenicity dataset are mutagens/not-mutagens. Nodes from PROTEINS graphs are amino
acids, while edges exist for amino acids less than six Angstroms apart; each graph is labeled as
enzyme/not-enzyme. ENZYMES are classified by their top level enzyme commission (EC) number.

4.2 Hyperparameters

Hyperparameters remained constant across all models and training runs. Each model was implemented
with one attention head for each of three attentional layers. The first two layers employed Exponential
Linear Units (ELU) for �z , while the final layer employed mean pooling with sigmoid activation.
Normalization was done by setting �a = softmax. The hidden dimension for all layers was 64.
The optimizer was Adam with a learning rate of 0.001 and weight decay of 5 ⇤ 10�4. The loss
function utilized was Binary Cross Entropy for binary classification and Cross Entropy for multi-class
classification. For binary classification tasks, training consisted of 10 epochs, replicated over 10
training runs. For multi-class classification, training consisted of 100 epochs for 10 training runs.

5 Results

Results for empirical experiments can be seen in table 1. We found that the highest performance for
all four tasks was achieved by models with non-monotonic activation functions. In fact, we have
established (to the best of our knowledge) a new benchmark result on the binary graph classification
task for the AIDS dataset with 98.67% accuracy.

Model AIDS Mutagenicity PROTEINS ENZYMES
GAT 98.37± 0.4 70.32± 1.2 64.52± 3.7 49.44± 3.1

GATv2 98.57± 0.5 71.44± 0.7 64.46± 2.7 51.56± 4.9
GAT_GELU 98.50± 0.3 70.28± 2.2 64.17± 2.5 49.67± 4.6
GAT_SILU 98.07± 0.6 69.74± 1.6 65.77± 1.5 49.78± 2.8
GAT_MISH 98.00± 0.7 70.14± 1.5 65.36± 1.9 49.78± 2.6
GAT_NONE 98.33± 0.6 70.25± 1.6 63.33± 2.4 48.89± 3.3

GATv2_GELU 98.10± 0.5 71.66± 0.9 65.53± 3.1 53.22± 2.9
GATv2_SILU 98.67± 0.3 70.87± 1.1 64.05± 3.2 52.11± 3.4
GATv2_MISH 98.57± 0.3 71.43± 1.0 62.08± 2.3 50.67± 3.4
GATv2_NONE 98.17± 0.8 70.31± 2.1 61.13± 2.5 49.91± 3.0

DYNAMAT 98.37± 0.8 70.63± 1.0 68.99± 1.4 44.89± 7.6
Benchmark 97.3 83 84.91 78.39

Table 1: Performance on Graph Classification Tasks. Top results are indicated in yellow, while top
results excluding benchmarks are indicated in bold. Results include the mean accuracy and standard
deviation across training runs. Benchmarks are recorded to the best of our knowledge [11] [1].
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Comparing results within GAT variants, we see that introducing non-monotonicity improved model
performance. For 3/4 of the classification tasks, the highest performing GAT variants were those with
non-monotonic nonlinearities. To confirm that non-monotonic activation functions can make static
graph attention mechanisms dynamic, we extracted the learned attention weights. As can be seen
in figure 2, dynamic attention can be and was achieved, as the ranking of weights extracted from
GAT_GELU is sensitive to the query node for the sample graph displayed from the AIDS dataset.

Figure 2: Dynamically Learned Weights from GAT_GELU. Colors represent query nodes i from a sample AIDS graph

Interestingly, for GATv2 variants, which already generate dynamic attention coefficients, similar
results were observed; for 4/4 classification tasks, the highest performing GATv2 variants were those
with non-monotonic nonlinearities. These results imply that even dynamic attention mechanisms may
benefit from non-monotonic activation functions. The mathematical formulation as to why this may
be the case is left as an open question; however, future studies targeting this question specifically
may focus on in-depth analyses of over-smoothing and over-squashing of deep attention mechanisms
to see if non-monotonicity mitigates these problems, perhaps invoking over-smoothing vulnerability
definitions similar to Lee et al. [8].

Removing �e entirely had mixed results on model performance across datasets. In the worst case
(PROTEINS), GAT_NONE performs 5.66% worse than the top performing model, while in the best
case (AIDS), GAT_NONE performs just 0.33% worse than the top performing model. These results
may suggest that �e is not necessary; however, further investigation is needed.

Lastly, DYNAMAT performance was unremarkable for AIDS and Mutagenicity, achieving com-
parable accuracies as other model variants. For PROTEINS, DYNAMAT was the top performing
model, suggesting the structures of the PROTEINS graphs may particularly benefit from point-wise
multiplication of node representations. The opposite is true for ENZYMES, as performance is the
worst compared to all other variants. These results add to the growing body of literature demonstrating
the need for bespoke attention mechanisms depending on the nature of the task and data at hand.

6 Conclusion

In this paper, we analyze the utility of non-monotonic activation functions within graph attention
scoring mechanisms, showing the potential for carefully chosen activation functions to generate
dynamic weights from previously static mechanisms. We provide empirical evidence on the benefits
of non-monotonic activations for both static and dynamic attention, while simultaneously questioning
the necessity of additional nonlinearities beyond �a and �z . In evaluating our models, we achieved
a new benchmark result on the AIDS graph classification task and introduced a new attention
scoring function, DYNAMAT, which outperformed all other models on PROTEINS classification.
Further work might explore over-smoothing and over-correlation in deep attentional layers, as well
as initialization schema that stabilize variance propagation while simultaneously encouraging the
learning of dynamic attention weights.
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